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Abstract

This is the first published research focused on the impact of gamma and mixed

gamma/neutron radiation on an actively lasing ytterbium-doped fiber laser. While

the gain medium of the ytterbium-doped fiber laser was irradiated, the power was

measured in-situ and the spectrum was recorded intermittently. Two radiation

sources were used, a 60Co cell and a reactor. Three irradiation experiments were

conducted per radiation source; pristine fibers were used for the first two

experiments, and fibers from the second experiment were re-irradiated for the third

experiment. The results indicate that as the total dose increased linearly with time,

the laser experienced an exponential decay in power with a maximum power loss of

99.84% (at which time it was no longer lasing), and the lasing wavelength

blueshifted up to 15 nm. The laser’s initial power affects how much the radiation

induced attenuation in the fiber. The laser, when exposed to 145 krad(Si),

experienced less attenuation with a higher initial power than with a lower initial

power. Power recovery experiments were conducted post-irradiation with the fiber

laser off and actively lasing. Passively, the power recovered 100 and 550 µW in 18

and 90 hours respectively. Active recovery experienced the same 100 µW recovery in

9.3% of the time (10 min), and total power recovery of 12.6% and 4.4% for YDF1

and YDF2 respectively. The active recovery rate declined as the number of days

following irradiation increased. This indicated a saturation of recovery after the less

stable color centers were annealed. The active recovery rate for the re-irradiated

fiber (gamma only) decreased 31% from the recovery rate just prior to re-irradiation.
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MASTERS

1. Introduction

1.1 Motivation

Since the 1980s, fiber optics have been the workhorse for the long-distance

telephone network. Fiber optics are still a staple in communication networks today,

and they have been implemented in other areas such as astronomy, medicine, and

space. Fiber optics are not only thinner and lighter than metal wires, but they also

possess greater bandwidth and less susceptibility to interference, and transmit

multiple signals through the same fiber. These properties result in systems being

lighter, more compact, and more robust than their metallic predecessors.

The advantages of fiber optics have been furthered through the development of

doping silica with rare earth (RE) elements. Compared to standard fiber optics,

RE-doped fibers provide signal gain within the fiber, reducing and sometimes

eliminating the need for massive electronic amplifiers within a communication

network or on a satellite where space and weight come at a high price. The

advancement of RE-doping techniques has allowed much greater doping

concentrations of RE elements to be achieved, resulting in shorter lengths of fiber to

be used for some applications. However, even at low RE-doped concentrations,

RE-doped fibers can be employed as integral parts in fiber amplifiers and lasers.

To date, the most common RE element used in fiber optics has been erbium (Er)

[1]. Er-doped fibers (EDFs) have dominated in the communication world as a result

of their ability to amplify signals of commonly used communication wavelengths
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(1330 and 1550 nm) [2]. However, the concentration to which Er can be doped is

limited. The formation of ionic clusters increases with higher levels of Er-dopant

concentrations, and reduces the functionality of the Er-doping. If the ionic clusters

form in a large enough area, the signal gain, due to the RE-dopant, can become too

concentrated in one part of the fiber and leads to a breakdown of the fiber from

excessive heat. However, the concentration barrier faced by Er-doping has been

surpassed by concentration levels achieved with ytterbium (Yb)-doping, on the

order of 2.4×1022 cm−3, along with the use of other co-doping elements [1].

The use of Yb is widespread because of its simple energy-level diagram, large

delta of functional wavelengths, and high luminescence efficiency [3]. Yb-doped

fibers (YDFs) exhibit high output power, excellent efficiency, versatility in complex

and unstable environments, and minimal losses from excited state absorption and

concentration quenching [4]. Ytterbium-doped fiber lasers (YDFLs) are utilized in

several applications including high-powered lasers and optical amplifiers. Even at

low doping concentrations, Yb-doped fiber amplifiers (YDFAs) and YDFLs are

capable of producing gain. Additionally, Yb can be doped at a much higher

concentration level than Er, allowing for higher gains in shorter lengths of fiber.

YDFs have become the most important of the RE fibers, and have proven to be less

susceptible to radiation damage compared to other RE-dopants [5]. However, in

order to achieve a high level of doping, aluminum (Al) must also be co-doped into

the silica in order to prevent the Yb from forming ionic clusters within the fiber.

The doping of silica with RE elements provides many excellent attributes, but

not without some setbacks. RE-doped fibers are more susceptible to radiation

damage than standard telecommunication optical fibers typically by orders of

magnitude [6]. Since RE-doped fibers are increasingly being used in harsh

environments where radiation is present, it is important to understand how these
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fibers will perform under these circumstances. The need for research regarding the

radiation sensitivity of RE-doped fibers has been specifically identified in multiple

publications [7, 8, 9]. Data on the radiation sensitivity of RE-doped fibers is

essential for the appropriate utilization of these fibers in space applications.

Numerous studies have shown that fibers exposed to radiation produce color centers

within the matrix of the fiber. A color center, also known as an F-center, is formed

when an anion (a negatively charged ion) is displaced from the host lattice and is

replaced by an electron. Color centers can occur naturally in compounds if they are

heated to very high temperatures or they can be created by irradiation in fibers that

are doped with RE ions. In either case, sufficient energy was deposited into the host

material to remove an anion in the lattice, leaving a positive net charge, or hole, in

its place. An electron is then attracted to this hole and then binds to the lattice.

This binding of the electron causes absorption of light, especially in the visible

spectrum. Although, these color centers can also absorb the pump or signal light

from a fiber amplifier or fiber laser causing a reduction in transmitted signal

through the fiber [10]. This linear absorption through the fiber can be measured at

the wavelength of interest in decibels (dB) per unit length, and is characterized as

radiation-induced attenuation (RIA). This degradation from light absorption,

specific to RE-doped fibers, is thought to affect three main mechanisms associated

with the absorption of energy. These mechanisms will be discussed in the next

chapter on theory.

RE-doped fibers are more susceptible to radiation than pure SiO2 fibers.

Numerous studies have indicated that these types of fibers can be hardened for

protection against the RIA that develops within the fibers during irradiation. Some

studies suggest that the radiation sensitivity of the fiber is more dependent on the

concentration of secondary, co-doped elements (such as Al, Ge, or P) rather than

3



the concentration of RE-dopants [6]. While co-doping the fiber with some elements

can increase the radiation sensitivity of the fiber, there are other elements, or

combinations of elements, that can decrease the radiation sensitivity of the fiber

(this is known as hardening the fiber). Specifically, a few studies reported that

Cerium/Yb or Er/Yb co-doped fibers resulted in radiation hardening of the fibers

[4, 11, 12]. YDFs have shown less RIA compared to EDFs exposed to the same

amount and type of radiation, meaning YDFs are less susceptible to radiation

damage. Additionally, EDFs that were co-doped with Yb were less sensitive to

radiation than EDFs with no co-dopant. In all cases, it has been shown that the

RE-doped fibers are the most radiation sensitive part of the system (amplifier or

laser for example) they are in [5, 12, 13, 14].

It is difficult to predict or model how any one type of fiber will perform under

the exposure of radiation and, therefore, radiation sensitivity should be determined

experimentally [6]. There has been a great effort in cataloging the many different

types of fibers to determine their radiation sensitivity and usability in environments

with radiation. Among these efforts are two large databases on fiber characteristics

for space and radioactive environments. One database is maintained by the NASA

Electronic Parts and Packaging (NEPP) Program, and the other database is

managed by the European Space Agency’s European Space Components

Information Exchange System (ESCIES) [15, 16]. These databases are paramount

for selecting the best fiber in which the following are considered: the radiation levels

to which it will be exposed and the amount of shielding it requires. In spite of these

large databases, which were built upon data from multiple experiments on fibers

and fiber systems, no studies have been performed on active YDFLs, one study has

been performed on an active Er-doped fiber laser in-situ, and only a handful of

studies have been conducted on the radiation damage of actively operated fiber

4



amplifiers in-situ [2, 11, 17, 18, 19]. In Singleton’s dissertation she points out “there

are scant published results on the radiation effects to Yb-doped fiber laser systems

while in the active mode” [2]. Others have specifically expressed the desire to see

radiation experiments performed with active configurations or just more

experiments on YDFs in general [18, 20, 21]. A separate paper discusses the desire

to know the “worst case” for RIA with each type of doped fiber amplifier or laser

configuration [22]. Thus, the motivation for this work was to publish results of an

active YDFL as it was irradiated to determine how the radiation affected the laser.

1.2 Problem Statement

The goal of this thesis was to determine the affect of gamma and mixed

gamma/neutron radiation on the power output of an active YDFL. To my

knowledge, these are the first and only documented experiments of an active YDFL

being irradiated with data taken in-situ. The experiments focused on monitoring

power measurements and spectral data of the YDFL in-situ while being irradiated.

The two sources used were both housed at the Ohio State University Nuclear

Reactor Lab (OSU-NRL). The first was a gamma only radiation source from a 60Co

irradiation cell, and the second was a continuous mixed gamma/neutron radiation

source from the Ohio State University Research Reactor (OSURR). The analysis

from the experimental data will focus on comparing the RIA observed in the YDFL

with previous experimental data on other irradiated RE-doped fibers and fiber

systems which use RE-doped fibers as a gain medium. This information will help to

determine how the RIA of an actively operated YDFL will be affected by radiation

in comparison to the RIA of RE-doped fibers and fiber systems from previously

conducted experiments.

5



2. Theory

2.1 Origin of Fiber Optics

Fiber optics operate by utilizing a phenomenon known as Total Internal

Reflection (TIR). TIR occurs when light travels inside a medium that has a higher

index of refraction than the medium surrounding it. When the light hits the

boundary of the two mediums, the light is reflected back into the medium,

essentially trapped within that medium. Historically, TIR was not mentioned much

until 1841 when Daniel Colladon, a Swiss physicist, began demonstrating it in his

scientific lectures [1]. He essentially used a water cooler with a spout at the bottom

to guide light from a light source (see Figure 1). The light could be seen traversing

down, totally encompassed inside the waterfall. By the early 1900s, scientists were

utilizing TIR in glass rods to guide light to illuminate microscope slides. However,

fiber optics did not really begin to shine until the 1960s, when the first lasers were

built. Even then, it took another decade to discover a way to produce glass pure

enough to transmit signals over 500 meters with at least 10% of the signal light

remaining. In today’s fibers, it is possible to transmit signals further than 50

kilometers with 10% of the original light signal remaining [1].

TIR operates by trapping light within a medium that is surrounded by a material

with a lower index of refraction. For fiber optics, the material in which the light will

be guided through (or trapped) is called the core, while the material that surrounds

the core is called the cladding. The most common material used for the core and

the cladding is glass; although, the core and cladding must have different indexes of

refraction in order for TIR to occur. The difference in indexes of refraction is

accomplished during the manufacturing process of the glass. The core and cladding

indexes of refraction can differ by as little as 1% (1.485 for cladding, 1.5 for core)
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Figure 1. In essence, the total internal reflection demonstration conducted by Daniel
Colladon in the 1840’s [23].

and TIR will still occur. The main principle of TIR can be seen using Snell’s law,

nI sin(θI) = nT sin(θT ), (1)

where nI and nT are the indexes of refraction for the core and cladding respectfully,

and θI and θT are the incident and transmitted angles. Snell’s law shows that in

order for the light to be trapped within the core, θI , must be an angle that makes

θT greater than 90◦. The critical angle, θcrit , is defined as the angle of θI when θT

will equal 90◦. In order to have total internal reflection, θI must exceed the critical

angle. The critical angle can be found by setting θT = 90 degrees and solving for

θcrit using equation (1).

θcrit = arcsin

(
nT
nI

)
(2)

As previously stated, the usual difference in indexes of refraction between the core
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and cladding is about 1%. Therefore, nT/nI = 1.485/1.5 = 0.99. From this, the

critical angle of a fiber can be determined.

θcrit = arcsin(0.99) = 82◦

Once the signal or pump light is coupled into the fiber, the light will travel

through the fiber reflecting itself back into the fiber each time it encounters the

boundary between the core and cladding.

Glass is a non-crystalline solid, and can be made from multiple compounds (as

long as the crystallization of the compound can be stopped by rapid cooling or

other techniques) [1]. In fiber optics, the most commonly used compounds are

oxides, and the most prevalent oxide used is SiO2. However, SiO2 must be highly

purified in order for it to be useful in modern fiber optics. The attenuation of glass

is the major limiting factor for use in fiber optics. Glass used in fiber optics

experience attenuation from 1 dB/m, which limits the distance at which the light

will travel. At this attenuation, the light can only travel in the glass fiber a few

kilometers before the signal will be too small to detect. The attenuation comes from

impurities in the SiO2 which absorb light in the 0.6 to 1.6 µm range. These

impurities are iron, copper, cobalt, nickel, manganese, and chromium. When the

impurity levels of these elements are reduced to 1 part per billion, a more useful

form of SiO2 is attained [1]. This highly purified form of SiO2, known as silica, has a

much lower attenuation level around 5 dB/km. Both the core and the cladding are

typically made with silica. However, an entire fiber made of pure silica, would not

exhibit TIR, since the core and the cladding would both have the same indexes of

refraction (≈ 1.45 for pure silica). Therefore, in order to make the entire fiber from

silica, the core, the cladding, or both the core and the cladding must be doped with

other elements in order to alter their optical properties.
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2.2 RE-doped Optical Fibers

Dopants such as germanium, aluminum, and phosphorus are used to raise the

index of refraction of silica [24, 25]. Only a few dopants have been found to lower

the index of refraction of silica; the most typical dopant is fluorine, followed by

boron [1]. Other dopants, such as RE metals are doped into silica to provide signal

gain within the fiber, allowing the fiber to ultimately be used as an amplifier or

laser. The RE element used in doping will determine the fundamental

characteristics of the fiber. Some of these characteristics will determine the

wavelengths at which the fiber can be pumped, the signal wavelengths the fiber will

amplify, as well as other non-optical consequences such as radiation sensitivity.

However, in order to understand how the fiber will be affected by the RE element,

the RE elements themselves must first be understood.

As Digonnet explained, rare earth elements are divided into two groups each

containing 14 elements. The first group, the actinides, does not contain any stable

isotopes, so they are not used in fiber optics. The second group, the lanthanides,

has many stable isotopes that are utilized in optical amplifiers and lasers. The most

electronically stable of these ions is the trivalent (3+) level of ionization. The

electronic makeup of these isotopes is the xenon structure (5s and 5p electron shells

filled) plus a varying number of 4f electrons (1-14) [25]. The filled 5s and 5p

electron shells act as a shield against the 4f shell. As the number of 4f electrons

increases (corresponding to an increase in atomic number), the electrons become

more tightly bound to the nucleus. This increases the shielding effect of the outer 5s

and 5p electron shells, causing useful characteristics in the trivalent isotopes when

incorporated into bulk materials. One useful characteristic is that the energy levels

of the lanthanides remain nearly unaltered, which allows for few host-induced

splittings when doped into another material. Next, they exhibit little or no
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vibrational excitation from the host lattice, and minimal non-radiative relaxation

(phonon transitions). Finally, because of these characteristics, the 4f optical

transitions exhibit narrow, weak bands, and highly efficient emissions [25]. From the

4f shell, the electrons can transition from different excited and ground states as

they absorb photons (i.e. pump signal). Due to the frequencies needed to transition

these 4f electrons, the photon wavelengths that are absorbed are in the visible and

infrared spectrum. Conversely, for lasers, these same wavelengths will be emitted

from stimulated emission when a signal of the same wavelength encounters an

excited 4f electron.

Yb3+ ions possess properties that make it an excellent dopant for fiber lasers and

amplifiers. Yb3+ demonstrates high luminescence efficiency, and the ability to

amplify light over a broad range of wavelengths (975 to 1200 nm). These properties

allow for a variety of uses in fields such as telecommunications, medicine, and

military applications [3]. Because Yb3+ ions can be doped to much higher

concentration levels than Er3+ ions, this allows for higher gains in shorter lengths of

fiber. However, in order to achieve this high level of doping, aluminum oxide (AlO2)

must also be co-doped into the silica in order to prevent the Yb3+ ions from forming

clusters within the fiber, which decreases the amplification of the fiber. While the

AlO2 co-dopant provides the ability to increase the Yb3+-doping concentration in

the silica, it also negatively affects the fiber by increasing its radiation damage

susceptibility. However, the benefits of greater concentrations of Yb3+ ions outweigh

the increased radiation damage susceptibility. Also, YDFs have proven to be less

susceptible to radiation damage compared to other RE-doped fibers [5]. YDFs also

exhibit high output power, excellent efficiency, and decreased losses from excited

state absorption and concentration quenching due to Yb’s relatively simple energy

level diagram (see Figure 2) [4]. These favorable characteristics (especially when
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considering making a laser) have made YDFs the most important of the RE-doped

fibers.

When Yb3+ is doped into silica, the energy levels of Yb3+ are broadened from

phonon interactions with the silica matrix. These broadened Stark levels (splitting

of one level into multiple sub-levels) can be seen in Figure 2 and show that the 2F7/2

level has split into four sub-levels and the 2F5/2 level has split into three. The Yb3+

ions in silica can absorb photons at specific wavelengths and can emit photons at

other specific, yet longer wavelengths as well. These transitions promote the

efficiency of the YDFL because they create levels that will absorb and decay at

frequencies close to the pump and signal frequencies. These are the main properties

of the RE elements that have propelled fiber optics to the forefront of technology

today.

2.3 Laser Principles

Electrons in an atom are bound to the electric field of the nucleus. The electrons

occupy certain orbitals around the nucleus depending on their energy. Each orbital

around a nucleus has a discrete energy level that an electron must posses in order to

occupy a specific orbital. As an electron increases its orbiting distance from the

nucleus, its energy increases but its stability decreases. Electrons prefer to be in the

lowest energy configuration possible where they are considered to be stable. When a

photon is incident on a material, an electron in the material can absorb the photon.

The photon must have the specific energy to raise the electron to a higher orbital

(energy level) in order to be absorbed. If it does, the electron will absorb the

photon and be excited to a higher energy level, shown as E2 in Figure 3. The

electron will only remain excited for a short period of time, as little as nanoseconds,

before it will relax to its lower, stable energy level, E1 [27]. When this lowering of
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Figure 2. The energy level diagram of Yb3+ doped in silica. The lasing wavelength
utilized in this thesis is not shown here specifically. This is due to the fact that this
diagram is for Yb3+ doped in silica only. When other co-dopants are added to the silica,
the energy level spacing can change slightly from the co-dopants interacting with the
lattice of the silica. This image was recreated from [26].

energy occurs, a photon is emitted with a frequency, ν, which is proportional to the

energy difference of the two energy levels.

E2 − E1 = hν,

where h is Planck’s constant. This process, where the excited electron relaxes to its

lower energy level without any external influence, is called spontaneous emission

(see “Spontaneous emission” in Figure 3). The photon released from spontaneous

emission can be emitted in any direction and with any phase. Stimulated emission

occurs when an electron is in an excited state, then is stimulated into a lower energy

state by a photon. When this stimulated emission occurs, the electron releases a

photon that is the exact match to the photon that caused it to decrease its energy

level. Now there are two photons with the same frequency, phase, polarization, and

propagation direction [27]. This is shown in Figure 3 (Stimulated emission). If there
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are enough excited electrons in the material stimulated emission will again occur,

twice this time since there are now two photons in the system. These two photons

will create two more photons via stimulated emission, then the four will create four

more, and so on. This cascading effect is optimized to create gain of a specific

frequency which in turn produces a powerful coherent beam of light, called a laser.

Figure 3. Absorption: an incident photon with energy equal to ∆E excites the electron
to the upper level. Spontaneous emission: The excited electron relaxes to lower level
as it releases a photon with random direction, phase, and polarization. Stimulated
emission: The excited electron is stimulated to the lower level by an incoming photon.
When the excited electron transitions to the lower level, it releases a photon with the
exact frequency, phase, polarization, and propagation direction as the incoming photon
[28].

Lasers operate by utilizing the principles of absorption and stimulated emission

to create gain, but the electrons in the material used for lasing (gain medium) must

be carefully prepared. A laser must have a continuous chain reaction of stimulated

emission in order to keep lasing. This is accomplished by constantly exciting the

electrons in the gain medium to an excited state, so that the number of excited

electrons in the material is greater than the number of electrons in the lower energy

states. This is called population inversion. Population inversion can be achieved by

constantly barraging the electrons with photons of the specific frequency needed to

excite them to a higher energy level. In this thesis, this was accomplished by using a

pump laser tuned to 975 nm to excite the electrons to the desired excited energy

level (specifically level 3 as seen in Figure 4). Yb is able to be made into a laser by
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exploiting the multiple Stark levels in the upper 2F5/2, essentially turning a

two-level system into a three-level laser. This is accomplished as the electrons are

pumped to a higher energy state in the 2F5/2 level, E3, then relax without releasing

a photon (non-radiative relaxation) to the lowest 2F5/2 energy level, E2. Once here,

the electrons can transition by stimulated emission to the ground state in the lower

2F7/2 energy level, E3. This process is depicted in Figure 4.

2.4 Ytterbium-doped Fiber Lasers

The YDFL for the experiments presented in this thesis will operate by exciting

electrons in the YDF, the gain medium, with a laser. This laser, called a pump

laser, is tuned to the wavelength of 975 nm which will specifically excite the 2F7/2

level electrons to the 2F5/2 level. After a short time there will be more electrons in

the 2F5/2 level than in the 2F7/2 level, creating a population inversion in the YDF.

Some of the excited electrons will then spontaneously decay, as mentioned above,

releasing photons as this occurs. However, the wavelengths of the released photons

will vary depending on which energy level the electrons relax to, creating a number

of photons with many different wavelengths, directions of propagation, and phases.

Some of these photons that are released from spontaneous emissions will then

trigger stimulated emission with the other excited electrons within the YDF,

granted the photons have an angle of incidence greater than the critical angle

(keeping them inside the core of the fiber). This is a welcomed process for photons

of the desired wavelength, the signal or signal wavelength, but an unfortunate

byproduct when triggered by the random photons (photons not at the signal

wavelength). The random photons are multiplied as they stimulate emissions from

other excited electrons during spontaneous emission. This process, called amplified

spontaneous emission (ASE), creates a broad range of wavelengths that is amplified
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Figure 4. The electron is excited to the third energy level. Then it relaxes to the
second energy level without releasing a photon (non-radiative relaxation), and finally
relaxes to the ground state through stimulated emission (lasing) [29].

within the YDF. ASE reduces signal gain (of the desired wavelength) by decreasing

the number of excited electrons (through stimulated emission) as these random

photons propagate through the YDF in all directions. ASE creates signal distortion

and is a large source of noise for YDFLs [2].

Some lasers have an external signal source to start and maintain the process of

stimulated emission for the desired wavelength of the laser. These sources are often

lasers themselves, since lasers are coherent, powerful, and easily tunable to specific

wavelengths. For the YDFL used in these experiments, the YDF is pumped high

enough so that the electrons are able to spontaneously emit enough photons at the

signal wavelength to create a strong, coherent signal within a few round trips of the

ring laser. This process can be expedited with the addition of an optical isolator in

the ring laser. The optical isolator only allows the propagation of light in one

direction, so the photons generated by spontaneous emission and ASE will only be

allowed to pass through the optical isolator if they are traveling in the forward

direction of the ring laser. After a couple of round trips through the ring there will

be more photons traveling in the forward direction than in any other direction.

These photons will act as the signal light, which will begin the cascading effect of
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stimulated emission to produce a coherent beam of light at the signal wavelength.

The desired signal wavelength for this thesis is 1060 nm. With the addition of an

output coupler, 75% of the signal within the ring laser will be coupled back into the

ring to keep the stimulated emission process running, while 25% of the signal will be

directed to the power meter for measurements.

2.5 Components of Ytterbium-doped Fiber Laser

This experimental set-up requires a number of complex fiber optic components

including: connectors, t-couplers, tree couplers, wavelength division multiplexers,

and optical isolators. Without these components a coherent light beam cannot be

created from just fiber optics. They work together to produce this coherent beam

by isolating the signal photons (1060 nm), and by denying photons at other

wavelengths from reentering the gain medium. This ensures that the majority of

photons entering the YDF on successive trips around the ring are at the signal

wavelength. This allows for a large gain of signal wavelength while keeping gain at

other wavelengths to a minimum. The design, integration, and operation of these

components will be discussed.

In order for light to transfer from one fiber to another the light has to exit from

the end of the source fiber and couple into the end of the receiving fiber. The

transfer of light from the source fiber to the receiving fiber with minimal loss is not

an easy task. This requires precise techniques so that the light can be guided into

the core of the receiving fiber where it will continue to transmit as it was before the

junction. An example of this is the ferrule connector (FC). The FC is made by first

removing the plastic coating, which protects the silica in the fiber, at the end of the

fiber. The exposed silica at the tip of the fiber is then cleaved, polished, slid into a

ceramic ferrule, and glued into place. Then a metallic connector is placed over the
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ferrule to allow for easy connections to other FCs through a mating sleeve. The

mating sleeve allows for the ends of the two fibers to come in contact with each

other in a precisely controlled manner by screwing the FCs into the mating sleeve.

There are a few different types of FCs that are commonplace in fiber optics.

However, for the experimental setup in this thesis, the FCs were restricted to the

angled physical contact (APC) type [1, 30].

For the FC/APC type, each end of the fiber is cleaved with an angled cut and

then polished with superfine sandpaper. The cleaved angle reduces back reflections

when the light exits the source fiber and couples into the receiving fiber. Each

connector from the source and receiving fibers are screwed in at opposite ends of a

mating sleeve. The mating sleeve allows for both fiber cores to come in contact with

each other, stabilizes them so that the light can transfer from one fiber to the next,

and ensures the angled portions of each fiber are properly aligned with one another

[1]. These connectors work well for transferring the signal from one fiber to another,

but sometimes more complex components are needed in order to alter the signal in

specific ways.

The coupler allows the light to be split from one or more fibers into another fiber

or fibers. Couplers that split light into two separate fibers are called t-couplers.

Tree couplers, on the other hand, are couplers that split light into three or more

fibers. These are just two types of couplers, out of many types, on the market

today. For the construction of the YDFL used for this thesis, only one type of

coupler was used, the t-coupler (or sometimes referred to as y-coupler as it better

describes how it actually looks) [1]. The t-coupler typically has an input fiber and

two output fibers. With the YDFL built for the experiments conducted in this

thesis, t-couplers (each labeled as “Output Coupler” in Figure 6) were used in three

places. These t-couplers allowed for the incoming light to be split into two separate
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output fibers at varying percentages. This YDFL setup, for example, used a 99/1

coupler, a 50/50 coupler, and a 75/25 coupler. These numbers describe the

percentage of input signal that each of the output fibers will transmit and,

therefore, must total 100%. For the construction of the YDFL, the t-coupler that

was connected to the WDM allowed for a small portion (1%) of the pump signal to

be directed to a second t-coupler (50/50 coupler). This 50/50 coupler split the

pump signal in half so the power and spectrum of the YDFL could be monitored

and recorded. The third t-coupler was used to siphon off 25% of the signal

wavelength from the ring laser and direct it into a power meter to record the power.

Unlike the connectors, where the ends of the fibers are placed in contact with

one another to transfer the light, couplers are made by placing the fibers in parallel

with one another. The plastic coating and cladding are removed from one side of the

fibers in the coupler, and brought into contact with one another [1]. Then, the fibers

are heated so that they fuse with each other. Another technique involves stripping

both fibers down to the core, twisting the fibers around one another, and then fusing

them together. This helps to increase the transfer of light between the fibers. The

fibers are stretched while being fused in order to alter how the transmission of the

signal is divided between the outputs. This method is called the fused-fiber process.

The wavelength division multiplexer (WDM) is similar to a t-coupler, but it will

separate the input signal into two different wavelengths rather than a division of

total power. This is done by a few different methods, but the most common method

uses interference filters. Interference filters, also known as dielectric filters (since

they are typically made from dielectrics which do not conduct electricity), are made

by placing two materials with different indexes of refraction in alternating thin

layers. The difference in the index of refraction creates reflections at the boundary

of the two layers. As the interference filter increases in thickness (more alternating
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layers added), the reflection of light from the filter also increases due to an increased

number of boundaries to cause reflections. The light that is not reflected at these

boundaries, and therefore transmitted, can be tuned by selecting the proper

thickness of the layers of dielectric material [1]. The formula for calculating the

transmitted wavelength, λ, or determining the proper thickness of the dielectric

material, D, is given by

Nλ = 2nD cos θ.

Where N is an integer, n is the index of refraction of the dielectric, and θ is the

angle of the incident light with respect to the normal. Fiber Bragg gratings can also

act as a WDM, however, there is a difference between this method and the

interference filter method. Interference filters allow a specific wavelength to be

transmitted through the filter, while fiber Bragg gratings reflect specific

wavelengths. For this experiment, the WDM was used in reverse from how it was

described previously. Therefore, the WDM combined the signal from the pump laser

with the signal from the ring (1060 nm) into the output fiber of the WDM [1].

Finally, the optical isolator, as the name implies, isolates light traveling in a

certain direction by obstructing light not traveling in the desired direction from

passing through it. The allowed direction of travel, the clockwise direction in this

case, is depicted in Figure 6 by the arrow in the box representing the isolator.

Typically, isolators are used to prevent feedback in laser cavities such as the ring

laser used in these experiments. The isolator works by first collimating the incoming

light with a lens. The light then travels through an input birefringent crystal. This

crystal has its ordinary polarization direction on the vertical axis (o-ray = 0◦), and

its extraordinary polarization direction on the horizontal axis (e-ray = 90◦). This

crystal causes the light to split it into two different beams with two different
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polarizations. Next, the two beams pass through a Faraday rotator that rotates the

polarization of both beams by 45◦ changing the o-ray to 45◦ and the e-ray to -45◦.

Now, the e-ray and o-ray have polarizations that are rotated such that the output

birefringent crystal recombines the two beams into one, and passes it through the

output of the fiber optical isolator. This happens because the output birefringent

crystal is chosen such that its o-ray polarization is 45◦and its e-ray polarization is

-45◦. When the two beams each match their respective e or o-ray with the crystal,

they get recombined into one beam and can then propagate out of the isolator. This

case is represented in the top of Figure 5 (blue ray). However, if light enters the

optical isolator from the output, attempting to propagate through it in the reverse

direction, very little light, if any, will get through to the other side. This happens

because the output birefringent crystal (on the right side) splits the incoming light

into two separate beams, again, both with different polarizations (o-ray to 45◦and

the e-ray to -45◦). Then, the two beams propagate through the Faraday rotator,

and each beam’s polarization is rotated again by 45◦. Now the o-ray is polarized to

90◦and the e-ray is polarized to 0◦. When these beams travel through the input

birefringent crystal, their polarizations are oriented 90◦ different from the crystal’s o

and e-rays. Therefore, the crystal further separates the beams and prevents either of

the beams from propagating through the input of the isolator [31]. This can be seen

at the bottom of Figure 5 (red ray).

2.6 Radiation Effects on RE-doped Fibers

Radiation can degrade the performance of fiber amplifiers or lasers by the

formation of color centers in the host material (silica). Color centers can be created

by a variety of processes. The three main mechanisms responsible in the creation of

color centers involve the lattice of the silica being disturbed or changed from the
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Figure 5. Light propagating through a fiber optic isolator. The isolator allows light to
propagate from left to right (top) but blocks light from traveling right to left (bottom)
by using two different birefringent crystals and a Faraday rotator [31].

energy deposited by the radiation. Oxygen atoms can be displaced from their

standard position in the lattice, causing an oxygen deficiency (vacancy defects);

excess oxygen atoms can be moved into abnormal positions within the lattice

(impurity interstitial defects) [2]; the double bond between the silicon and oxygen

atoms in silica can be broken (dangling bond defects). All of these radiation

induced defects cause absorption of light within the core of the fiber.

Of these, the most common process that creates color centers is a type of oxygen

deficiency defect. This specific color center is created when an anion is removed

from its normal position in the lattice of the silica and a hole (positive charge) is left

in its place. This hole then attracts and traps an electron. The trapped electron

couples to the vibrations in the lattice causing absorption at specific wavelengths

[32]. These vibrational absorptions can absorb the pump or signal light, reducing

the transmitted signal through the fiber [10]. This linear absorption through the

fiber is characterized as RIA. RIA is measured by comparing the difference in

absorption before and after irradiation, at the wavelength of interest in decibels

(dB) per unit length [2].
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The absorption of light is thought to be from three main mechanisms that

interact with the Yb ions in the fiber. First, the color centers reduce efficiency of

energy transferred from the pump wavelength to the stimulated emission wavelength

by absorbing both the pump and signal light [17, 33]. Consequently, the reduction

in power conversion leads to a reduced output power of the amplifier/laser. Next,

non-radiative transfer of energy can occur from the pumped RE atoms to impurities

in the fiber, if the excited ions are located close to the impurity site. Lastly, the

impurities in the fiber can absorb the signal light causing a reduction in

transmission [2]. The presence of RE-dopants in silica induces a susceptibility to

radiation damage. Silica alone does not exhibit much RIA from radiation. However,

if it is doped with other elements, the damage becomes pronounced.

For a thorough review of previous radiation studies conducted on Yb, Er, and

Yb/Er-doped fibers see section 2.7 of Singleton’s dissertation “Radiation Effects on

Yb-doped Fibers” [2]. There, she highlights 13 separate studies, three of which were

conducted on active fibers. In Singleton’s study on the irradiation of an active

Yb-doped fiber amplifier, she concluded that the defects in the YDF induced by

radiation caused interference with the excitation and de-excitation of the Yb3+ ions.

This was shown by the nominal decrease in transmission of the pump signal within

the YDF, but the transmission loss of the signal through the YDF was significant. It

was this transmission loss from the absorption of signal light by the radiation defects

in the silica that dominated the loss of gain within the Yb-doped fiber amplifier.

2.7 Active Recovery (Annealing)

The formation of color centers within the YDFL cause absorption of the pump

and signal wavelengths. However, the absorption is not permanent because the color

centers are unstable and eventually decay on their own. When the color centers
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begin to decay, the displaced atoms in the silica lattice return to their intended

location, and essentially reverse the damage done by the radiation. This decay of

color centers decreases the absorption of the pump and signal wavelengths in the

fiber and, therefore, increases the transmission. The reduction of absorption in the

fiber is called recovery or annealing. Active recovery is the recovery experienced

while the YDFL was on and lasing, while passive recovery is the recovery that

occurred while the YDFL was off (dark).

The lifetimes for color centers vary depending on the type of defect that created

them. At room temperature the color centers decay very slowly, while at high

temperatures color centers decay (and recovery can occur) at a much faster rate.

One study reported that an YDFA exposed to 100 krad(Si) of gamma radiation

recovered back to its pre-irradiated power after being stored at room temperature for

2 years [34]. This suggests that all the color centers, for this specific dose, will decay

on their own after a certain period of time. Fox et. al. reported that YDFs heated

to 300◦C for 8 hours recovered transmission of signals in the 1.0 - 1.7 µm range by 5

- 15% [17]. Another experiment concluded that heating an EDF to 450◦C for 24

hours resulted in a recovery to 70% of its original (pre-irradiation) transmission [6].
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3. Methodology

3.1 Overview

Previously published work focused on active Er or Yb fiber amplifiers, and

damage done to fibers while dark, and then activated after irradiation to

characterize the damage [2, 6, 10, 11, 17, 19]. This is the only work to date that

analyzed the power output of an active YDFL while irradiated with gamma, and

mixed gamma/neutron radiation. These experiments were setup to examine how

the total radiation dose affected the power output of an YDFL with power

measurements taken in-situ.

Irradiation from two different types of radiation sources were used in the

experiments presented in this thesis. Gamma only irradiation from a 60Co source

and mixed gamma/neutron irradiation from a reactor (the OSURR). For both

sources the experiment was set up the same. A 1 meter length of pristine (never

been irradiated) YDF was connected to the YDFL which acted as the gain medium

of the laser. Then the YDF was irradiated while the YDFL was actively lasing. The

power output of the YDFL was monitored in-situ as the total dose the YDF

received increased over time.

3.2 Equipment and Materials Used

All of the equipment employed for the experiments conducted in this thesis was

commercially available standard optical equipment. Table 1 lists each component

that was used in the experiments. Before the experiments commenced, each

component was thoroughly characterized by noting the loss, in dB, experienced as

the components were added to construct the ring laser. Additionally, before each

irradiation experiment, the performance of the YDFL was optimized for a power
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output of roughly 20 mW.

Table 1. Equipment used in experiments for this thesis.

Item Specification

Yb-doped fiber for 60Co experiments
Liekki YB1200-6/125DC

direct from manufacturer

Yb-doped fiber for reactor experiments
Liekki YB1200-6/125DC

ordered from Thorlabs

980 nm diode laser JDSU S30-GPX57

Bench top laser diode/TEC controller
SRS LDC501 (60Co)

Newport 6100 (reactor)

Butterfly mount Newport 744

Passive single mode fiber Thorlabs P3-980A-FC-5

Fiber optic isolator Thorlabs IO-H-1064B-APC

Thor Labs output couplers

TW1064R3A2B (75/25 ratio)

FC11064-50B-APC-1 (50/50 ratio)

FC1064-99B-APC-1 (99/1 ratio)

WDM WD202E-APC (980/1060 nm)

Optical Spectrum Analyzer Yokogawa AQ6370

Thorlabs power meters
PM100USB

PM100D

Thorlabs power sensors (photodiodes)
S144C

S155C

3.3 Fiber Preparation

Fiber optics operate by guiding light through the core of the fiber. When one

fiber must connect to another fiber, it must be done with great care. If not,

significant loss may occur, and the signal through the original fiber may not couple

into the second fiber (fully or at all). For the experimental setup for the YDFL in

this thesis, there are two connection types that were exploited: fusion splicing, and

ferrule couplers (FC). Fusion splicing uses a special instrument which aligns the two
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ends of the fibers, then uses intense heat to join the two ends of the fibers together.

This is the best type method of connecting two different fibers together, however,

the splice is very brittle and can come apart quite easily. Also, this is a permanent

connection, so it was not logical to use for every situation. For example, the YDFs

for these experiments were switched out after each irradiation. Hence, permanent

connection of the YDF to the YDFL was impractical. Instead the FCs were used to

perform quick and easy connections/disconnections where practical or when the

fibers came from the manufacturer with FCs already attached. While the FC/APCs

are convenient to use, they do suffer more loss than fusion splicing, typically 3 dB

per coupler used.

The optimum YDF length for the highest power output of the YDFL was

modeled from the Fiber Amplifier and Laser Toolbox MATLAB program [35] by

inputting the parameters of the measured losses from within the fiber ring laser and

pump powers. The optimal length calculated was 1 m. The program was also

utilized to determine the best input/output coupler ratio in the ring laser, which

was 80/20. However, the only readily available output coupler at the 1060 nm

wavelength was one with a 75/25 ratio. This slight change in ratio, according to the

MATLAB fiber program, would incur a 7 mW reduction in power of the YDFL.

This small power reduction was acceptable since maximizing power of the YDFL

was not the focus of this thesis. As long as there was sufficient output power from

the YDFL to monitor as it degraded from radiation damage then the experiments

herein could be conducted.

The power of the pump laser was achieved by setting the current on the laser

diode controller to 650 mA, and the to temperature 22 ◦C. The power output of the

YDFL was monitored and recorded for 20 minutes prior to the start of

experimentation to ensure stability. The loss from each FC/APC connector was
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evaluated at the pump wavelength and recorded in Table 2 to aid in the modeling of

the power output with respect to total radiation dose. The loss measurements were

accomplished by connecting each component in succession to the previous

component, starting from the pump laser and measuring the output of the

components with the optical spectrum analyzer (OSA).

Table 2. Measured loss from cavity components.

Location Loss (dBm)

Pump laser through WDM 1.5

99/1 output coupler 1.6

5 m passive fibers (×2) 2.5 each

YDF to passive fiber 19.2

75/25 output coupler 4.3

Optical isolator to pump coupler signal 2.0 gain

3.4 Laser Characterization and YDFL Operation

The construction of the YDFL can be seen in Figure 6. The YDF is pumped

with a 980 nm fiber coupled diode laser with a power output of about 300 mW. The

laser was characterized by adjusting the current for the laser diode from a minimum

of 50 mA to a maximum of 650 mA. The temperature for the diode was kept stable

at 22 ◦C. The characterization of output power versus input current for the pump

laser can be seen in Figure 7.

The pump laser was incorporated into the ring laser utilizing a WDM, which was

then split into two paths using an output coupler. 1% of this light, from the ring

laser, was siphoned off with a 99/1 output coupler. Then, this light was further

divided in half with a 50/50 output coupler. This was done to allow dual

monitoring of the pump laser and ring laser spectra with an OSA with one output,

and a monitor to ensure the pump laser was still on and delivering power to the
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Figure 6. Experimental setup for the ytterbium-doped fiber laser.

YDF with the second output. The remaining 99% of the light traveled through 5 m

of passive fiber to the YDF. Ideally, all of the pump signal would be absorbed

within the YDF, and this was verified with OSA data taken during construction of

the YDFL. The spectra for this configuration showed very little power at the pump

wavelength of 975 nm after the pump signal propagated through the YDF. Next, an

output coupler directs 25% of the laser’s power to the power meter, while retaining

75% within the ring laser as feedback. Then the optical isolator restricts the 1064

nm signal, only propagating the light which is traveling in the clockwise direction

(as shown in Figure 6), which keeps the laser operating within one mode [30]. The

coherent light continues to travel clockwise within the ring and causing stimulated

emission within the YDF until the radiation damage increases the attenuation in

the YDF to a level that the pump lasers cannot sustain population inversion of the
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Figure 7. Plot of input current versus output power for the laser diode (pump laser)
measured with a power meter. The dashed line shows the expected power output for
input currents larger than 650 mA.

electrons in the 2F5/2 energy level.

To determine the total RIA induced by irradiation the following steps were made.

First, the initial power output of the YDFL was measured with a power meter from

the 25% output of the output coupler. This measurement was taken just as the

irradiation experiments began and is labeled as the initial power of the YDFL, PIn.

As the YDFL was irradiated, the output power of the YDFL, POut , was measured

in-situ. The RIA is found using the formula for decibel loss per length given by

RIA(λ, t) = − 10

LY DF
× log10

(
POut
PIn

)
(dB/m), (3)

where LY DF is the length of the YDF and the minus sign simply denotes that the

signal has decreased.
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3.5 Irradiation Experimental Setups

3.5.1 Gamma Radiation Experiments

The 60Co irradiator cell at OSU sits at the bottom of a pool of water roughly 20

feet deep. A dry tube, 6 inches in diameter, was installed vertically and adjacent to

the gamma cell. This allowed for experiments to be set up above the pool and

affixed to an apparatus. Once ready, the apparatus (henceforth called the elevator)

was lowered into place next to the gamma cell. The elevator was mechanically

lowered from above the pool by a small crane. Specifically for the experiments here,

the YDF in the YDFL had 5 m of passive fiber connected to it on each side. This

allowed for the YDF to be placed in the dry tube and lowered to the gamma source

while keeping the remainder of the YDFL at the top of the pool and away from any

damaging radiation. Once the YDF was coiled up and situated on the elevator, the

YDFL was turned on and characterized to ensure everything was working properly.

Then, the YDF was lowered into the pool to a predetermined depth. The depth

within the pool determined the dose rate the YDF experienced, with a maximum

dose rate of 32.7 krad(Si)/hr. Once in place the YDF remained there, while the

YDFL was actively lasing, for 4.5 hours, the time it took to reach the desired total

dose of 150 krad(Si). After each experiment was conducted, the YDF was replaced

with pristine YDF and then the experiment was repeated. Three 60Co experiments

were conducted with this setup, but, due to a shortage of available YDF, the third

experiment had to be altered. Therefore, the second experiment’s YDF (YDF2) was

re-irradiated for the final 60Co experiment. This fiber was exposed to a second dose

of gammas for an additional 3.25 hours, at which time the YDFL no longer showed

a signal at the 1060 nm wavelength.
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3.5.2 Gamma/Neutron Radiation Experiments

The OSURR is a pool-type reactor composed of multiple dry tubes, beam ports,

and a graphite thermal column (TC). The maximum operating power is 450 kW

which, at this power, can achieve a maximum neutron thermal flux of 1×1010

neutrons/cm2/s in the TC. Once in place, the reactor was turned on and the YDF

was exposed to continuous gamma/neutron irradiation while actively lasing. The

OSURR experiments consisted of placing the YDF 10.16 cm inside the G7 position

in the thermal column, which sits adjacent to the reactor’s core. The thermal

column is roughly 0.93 m away from the reactors core, with a 10 cm lead wall and

an 82.9 cm wall of graphite bricks, called stringers, between the core and where the

YDF was placed. The cavity where the YDF was placed was created by removing

two of these stringers to create a small void in the TC. The reactor was operated at

a greatly reduced power in order to extend the time the YDF was exposed to the

neutron flux so measurements could be taken, and the degradation to the output

power could be monitored. The reactor was operated at 50 W, 0.01% of the

maximum power output, in order to achieve a reduced neutron flux of 1 ×105

neutron/cm2/s. Subsequently, the reactor was run for 2.5 - 3.0 hours at powers

ranging from 50 W - 450 kW. The maximum power of the reactor is 500 kW,

however, OSU only runs it up to 450 kW to ensure they do not exceed the 500 kW

power level they are regulated to never exceed. When the time objective was made

for the day, the reactor as shut down and recovery data was taken for about 30

minutes. Then, as with the 60Co irradiator cell experiments, a pristine YDF

replaced the irradiated YDF in the YDFL and a second experiment was conducted

with the exact setup, but with the reactor at full power. Finally, a third experiment

was conducted with the same setup as the previous experiment; however, the YDF

was placed deeper in the TC, and the YDF from reactor experiment #2 was
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re-irradiated in this experiment.

3.6 Active Recovery (Annealing) Experiments

Active recovery experiments were conducted following irradiation from a

radiation source (either from the gamma only source or the mixed gamma/neutron

source). Regardless of which radiation source was used, the procedure for the active

recovery experiments was identical. The YDFL would remain on, and the power

and spectra of the YDFL were monitored in the same manner as the irradiation

experiments. Then, the YDFL would remain in place, and a second recovery

experiment was conducted 18 - 30 hours later. After the second active recovery

experiment, the YDF would be removed from the YDFL to allow for more

irradiation experiments to be conducted. Finally, the YDFL was moved to the lab

where three more recovery experiments were conducted on the YDFs irradiated with

gamma only radiation. The reason for discontinuing the active recovery experiments

on the YDFs irradiated by the mixed neutron/gamma source will be discussed later.

3.7 Uncertainty and Error Propagation

The confidence of the measurements taken herein must be discussed to ensure

accuracy. In this section the equipment used to record the power measurements will

be discussed, and the accuracy and uncertainty of the measurements will be

analyzed. Uncertainty that is carried forward in calculations is called propagation of

error, and must also be explored in order to ensure the results presented in this

thesis are accurately represented [36].

The power measurements presented in this thesis were recorded using the

Thorlabs PM100D power meter which was connected to a laptop via a USB cable.

The laptop was installed with the Thorlabs PM100/PM200 software which allowed
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the power measurements to be recorded digitally. This software utilized the

LabVIEW 8.5.1 software and drivers distributed by National Instruments. The

power meter software on the laptop allowed for the frequency of the data collection

to be varied. For all experiments the frequency was set to 0.5 Hz (measurements

taken every 2 seconds).

The power sensor used in conjunction with the power meter was the Thorlabs

S144C with a fiber optic connector. This connector allowed for the power output

from the YDFL (the 25% output from the 75/25 output coupler) to be screwed onto

the power sensor for more accurate readings. The range of power that this sensor

could be used for was 1 µW - 500 mW. The range of power measurements taken in

the experiments, approximately 45µW - 30 mW, fell within the reported range of

the sensor. The uncertainty of the measurements must now be explored.

The uncertainty in the power measurements recorded using the power sensor was

reported by the manufacturer as ± 5%. This will have a varied effect as the power

of the YDFL increases or decreases. For initial power readings at the start of the

experiments, the power of the YDFL was usually around 25 mW. For readings in 10

- 25 mW range, the maximum uncertainty would be ± 1 mW. This implies that the

range of an initial power reading would be 25 mW ± 1 mW. As the power reading

decreases, so too will the uncertainty. If a power reading is in the 25 - 40 µW range,

the maximum uncertainty would be ± 2µW. This would give a possible final power

reading of 40µW ± 2µW. These two examples encompass the range of minimum

and maximum values of YDFL power that was seen in the irradiation experiments

presented in this thesis.

However, the power meter measured the power of the YDFL more precisely than

the manufacturer reported, evidenced by the data which indicated stability in the

power measurements up to the 10 µW place. The 1 µW place fluctuated up to
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± 8µW . For this reason, a more accurate estimate of uncertainty in the power

meter of ± 10µW will be employed, rather than using the general estimate of

uncertainty reported by the manufacturer.

Another area for uncertainty involves the measurement and cutting of the YDF

to a length of 1 m. The measurements were made using a tape measure with

millimeter increments. Therefore, the uncertainty of the length measurements, dL,

would be ± 0.001 m and the best estimate for the length, Lbest, would be 1.000 m

[36]. Therefore, the measured value of the length of the YDF, L, would be

L = Lbest ± δL = 1.000 ± 0.001 [m]

The only instance in which the power data and the length of the YDF were used

to calculate another value was for the determination of RIA. This calculation is a

simple logarithmic scaling of the ratio of measured powers at a given time versus

the initial power. According to Taylor, any propagation error problem can be solved

using equation 4 [36].

δq =

[(
∂q

∂x
δx

)2

+

(
∂q

∂y
δy

)2

+

(
∂q

∂L
δL

)]1/2
(4)

This equation has been adjusted to reflect the number of separate measurements

present in this thesis. Specifically, x and y are the measured power of the YDFL

taken from the power meter, L is the measured length of the YDF, and δx, δy, and

δL are the uncertainties of their respective measurements. These values are used to

calculate the function q(x, y, L), which is the RIA calculation in equation 3; however

y now represents Pout (the measured power at a certain time after irradiation was

initiated), and x represents Pin (the measured power prior to irradiation).

Next, the partial derivative of the RIA was found for each of the three variables
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in the function. The partial derivative of q with respect to x is

∂q

∂x
=

10

L · x · ln (10)

The other two partial derivatives were calculated in the same way, and are not

shown. Then, the measured values of x, y, and L, along with the values of

uncertainties discussed above were plugged into the three equations produced from

the partial derivatives of the RIA equation. In this example, the measured values of

x, y, and L were 25 mW, 40 µW, and 1 m respectively. With the equation 4, the

total uncertainty in the RIA calculation, becomes

δq =
[(

173.7178 · 10−6
)2

+
(
−108, 570 · 10−6

)2
+ (−27.9588 · 0.001)

]1/2
= 0.1477

The RIA calculation for this case, with uncertainty considered is

RIA = −10

L
× log10(

y

x
) = 27.9588 ± 0.1477 (dB/m)

The propagation of error for the case explained above had the largest difference

regarding the ratio of power measured before and during irradiation. Furthermore,

this case had the largest percentage of error for the data presented in this thesis.

The error was ± 0.5284% in RIA. Further calculations were run with measured

power values closer to the initial power measurement of 25 mW; these calculations

demonstrated a much lower error of RIA. For a measured power of 23 mW and an

initial power measurement of 25 mW, the error in RIA was found to be less than

0.0003%.
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4. Results of Gamma Irradiation on an YDFL

4.1 Chapter Overview

The gain medium (YDFs) in an YDFL were irradiated with a 60Co gamma

source while actively lasing. The power of the YDFL was monitored in-situ, and

spectra of the pump laser and signal created by the YDFL were collected. The first

two experiments were conducted on YDF1 and YDF2 respectively. Each was

exposed to the gamma irradiation cell for 4.5 hours, receiving total doses of 145

krad(Si). For the third experiment, YDF2 was exposed to an additional 100

krad(Si) dose of gamma radiation. Following each experiment, the YDFs were kept

in place on the elevator, and the YDFL continued lasing for varied lengths of time

(depending on the OSURR schedule). The purpose of the recovery data collected

was to investigate if the radiation damage could be annealed (repaired) at room

temperature with the YDFL actively lasing (active recovery). The annealing would

be proven possible if the power showed a significant increase over a relatively short

time frame (a maximum of 12 consecutive hours). Annealing would also be

investigated in the YDFs when the YDFL was turned off for many hours then

turned back on a day or two later (passive recovery).

It has been shown previously that the damage mechanism that plays the biggest

role in optical fibers is the creation of color centers within the fiber [2]. These color

centers can absorb the pump signal and/or the lasing signal which adversely affect

the power of the YDFL. In other studies, it has been seen that the most radiation

susceptible component of a rare-earth doped fiber laser is the RE-doped fiber itself

[12]. Hence, the experiments within this thesis limit the exposure of radiation to the

YDFs, the gain medium of the YDFL built for these experiments.
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4.2 Experiment

4.2.1 Irradiation Source Description

The gamma source used for these experiments was a pool-type 60Co gamma cell.

The gamma source itself was a cylindrical slab of cobalt which sat at the bottom of

a 15’ deep pool of water (roughly 25’ ×25’×15’). In order to access the gamma

source, a 6” dry tube was placed adjacent to the cobalt which extends upwards to

the top of the pool. A mechanical lift held a platform to which samples could be

placed on or attached to. This is referred to as the elevator. The elevator allowed

the sample to be lowered into the tube to place the sample at a certain height above

the gamma source. The height in the tube determined the dose rate the sample

experiences. The maximum dose rate, 32.3 krad/hr, was achieved at a height of 8

inches from the bottom of the pool.

4.2.2 Experimental Setup

The YDFL was setup on the top of the pool which housed the 60Co gamma cell.

The YDF was spooled up (3 loops with a 2” diameter) and taped down to the

bottom of the dry tube elevator. Two 5 m long patch cables were connected to both

ends of the YDF, and were routed upwards to the top of the dry tube elevator. The

patch cables were also taped into place to restrict movement of the fibers, and to

keep them contained so that the elevator could be lowered into place. The YDFL

was then turned on, and initial spectrum and power measurements were taken. The

laser diode controller/TEC was set to 650 mA of current and to a temperature of

22◦ C. The YDFL was allowed to run for 20 minutes to ensure the power level was

stable. Once this time had elapsed, the elevator was lowered into position to the

peak irradiation location of 8 inches from the bottom of the pool. This process took

about 20 seconds. At this location the dose rate was 32.3 krad/hr. The YDF was

37



kept in place for a total of 4.5 hours, until the total dose accumulated was 145

krad(Si). This experiment setup was used for both YDF1 and YDF2. Once the

desired total dose was achieved, the elevator was raised and the YDFL was kept

running for a period of time in order to record recovery data. Once the recovery

data was recorded, the laser was powered off, and the YDF was removed from the

elevator and disconnected from the YDFL. The YDF, YDFL, and instrumentation

placement was consistent for each experiment with the exceptions of replacing the

YDFs between each experiment, and lowering the YDFs into the gamma cell (the 5

m passive cables would move).

The third experiment using the 60Co gamma cell was setup exactly as the first

two experiments. The only difference was the YDF used was not a pristine fiber, but

a fiber that was already exposed to a dose of 145 krad(Si) in the second experiment

(YDF2). The YDFL was turned on and recovery data was taken for an hour. Then,

the elevator was lowered to bring the YDF into position next to the gamma source.

For this third experiment, the YDF was kept in the gamma irradiation cell until the

laser’s power had degraded to the point which the wavelength of the YDFL (1060

nm) could no longer be seen on the OSA. This occurred at 3.25 hours into the

experiment, resulting in YDF2 receiving a total accumulated dose of 252 krad(Si).

The fiber was then raised out of the pool and kept in place on the elevator for 2

hours. The laser remained on and initial recovery data was taken over this period of

time. After the initial recovery data was collected, the laser was shut off and the

YDF was removed from the elevator and disconnected from the YDFL.

4.3 Results and Discussion

Degradation of the power of the YDFL was measured in-situ to determine

vulnerability of the YDF, since these fibers have been shown to be the most
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radiation susceptible part of the YDFL. Also, the spectrum for the YDFL was

monitored in order to determine how the radiation damage would affect the

spectrum of the laser. Previous studies have reported shifts in the lasing spectral

regions of the RE-doped fiber lasers from effects induced by radiation damage. The

reported causes of the laser spectrum shifts were effects from color centers, thermal

effects, and changes to the optical cavity length [19].

4.3.1 YDF1

4.3.1.1 Irradiation

The power degradation in the YDFL started immediately after the fiber was

lowered into the gamma irradiation chamber and continued until the fiber was raised

out of the chamber. The power degradation experienced by YDF1 can be seen in

Figure 8, which clearly shows an exponential loss in power as the dose increases

linearly with time. After exposing YDF1 to a total dose of 145 krad(Si), its power

decreased from 22 mW to 416 µW. Using the initial power reading for the YDFL,

just prior to irradiation, the loss in power per unit length (dB/m) was calculated as

17.1 dB/m and can be seen plotted with respect to total dose in Figure 9. The

spectrum for the YDFL with YDF1 used as the gain medium was measured before,

during, and after the irradiation. The lasing spectrum prior to irradiation indicated

a fairly broad range, from 1046 - 1058 nm. The lasing spectrum began to shift

toward shorter wavelengths and began to sharpen as exposure to gammas occurred.

This shift is shown in Figure 10. The final measured lasing wavelength after a dose

of 145 krad(Si) was 1039 nm with a peak width of roughly 1 nm.

39



0 50 100 150

Total Dose (krad(Si))

0

5

10

15

20

25

30

P
ow

er
 (

m
W

)

YDF #1
YDF #2

Figure 8. An exponential decrease in power was seen for both YDFs as the dose
increased from 0 to 145 krad(Si) over the course of 4.5 hours.
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Figure 9. The RIA for both YDF1 and YDF2 increases linearly as the total dose
increases over time.
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Figure 10. The lasing wavelength for the YDFL with YDF1 as the gain medium. The
lasing wavelength shifted to shorter wavelengths as the total gamma dose increased.

4.3.1.2 Damage Recovery

Immediately following the irradiation of YDF1, active recovery data was taken

for 1 hour. The power of the YDFL increased a total of 266 µW from its post

irradiation power of 416 µW to 682 µW. The YDFL was then shut off and the fiber

was left in place on the elevator overnight. The following morning, 18 hours after

YDF1 was irradiated, the YDFL was turned back on and the fiber experienced an

increase in power of 97 µW from passive recovery overnight. The laser remained on

for another 20 minutes, and the active power recovery was monitored again. During

this time the laser power increased a total of 142 µW, from 797 µW to 939 µW.

After 20 minutes of active recovery time, the YDFL increased its power 154% more

in 0.02% of the time than it did passively for 18 hours. The YDF was then removed

from the elevator and the YDFL in order to perform irradiation experiments on

another fiber. All subsequent recovery data for this fiber was performed in the lab.

The initial power reading upon reconnecting YDF1 to the YDFL in the lab was
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higher than the final power reading recorded at OSU. The YDF and passive fibers

were disconnected at OSU, moved back to the lab, and then reconnected in the lab

for further measurements. Because the fibers were relocated, it is difficult to

determine if the power gain occurred due to passive recovery or from a difference in

how the fibers were configured. Simply touching or moving any of the fibers of the

YDFL caused fluctuation in the power of the laser. This was seen during

experiment setups, elevator movement, and accidental bumps of the fibers.

The third set of recovery data for YDF1 was taken at 90 hours post irradiation.

At the commencement of this data collection, the YDFL power was 1.5 mW, up 561

µW from the last power reading of the second active recovery period. This shows

that the YDF once again recovered from radiation damage without any light being

transmitted through it. The laser was left on for about 13 hours and the YDFL was

able to recover another 1.5 mW of power. The following day (at 118 hours post

irradiation) the laser was turned on again. After sitting dark for another 16 hours

the YDFL gained 68 µW of power. However, after about 12 minutes of the laser

being on, the power decayed slightly for about 25 minutes before it began to

increase in power again. After 5.5 hours of active recovery, the YDFL gained

another 173 µW, reaching a final power level of 3.3 mW. Each of the active power

recovery experiments can be seen in Figure 11. The slopes of these plots will be

used in the analysis chapter to calculate the total time it would theoretically take

the YDFL to recover to its pre-irradiation power level. In a published experiment

by Mady et al., it was shown that transmission in irradiated fibers did not recover

beyond 50% until the fibers were heated to 350 ◦C [21]. Therefore, actively

recovering to full power at room temperature would not be expected from any of the

experiments performed in this thesis.

The spectral data taken during the active recovery sessions for YDF1 can be
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Figure 11. The power for the YDFL increased at a higher rate of recovery immediately
following irradiation of YDF1. The power recovered roughly 100 µW overnight while
the fiber was dark. Then the laser was turned back on and the fiber recovered at
roughly the same rate as before. After 90 hours of passive recovery, the active recovery
rate for the fiber reduced significantly and remained constant for the remainder of
active recovery.

seen in Figure 12. The lasing wavelength of the YDFL redshifted from 1039 nm to

1041 nm over the course of 17.63 hours of total active recovery time. During this

shift, the width of the peak broadened some, to roughly 1.5 nm in width during the

transition to the longer wavelength. However, the spectrum narrowed back to its

initial width of 1 nm just prior to the end of the active recovery experiment.

4.3.2 YDF2

4.3.2.1 First Irradiation

The pre-irradiation power for the YDFL using YDF2 that was measured just

prior to being lowered into the gamma irradiation chamber was 28 mW. Once

lowered into the chamber the power of the YDFL began to decrease until it was

removed from the irradiation chamber 4.5 hours later. Upon removal from the
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Figure 12. The results for all power recovery spectral data taken for YDF1. The lasing
wavelength redshifted a total of 2 nm during the active recovery experiment. The
spectrum also showed a slight broadening of the peak during the transition to the 1041
nm peak wavelength. However, at the conclusion of the active recovery experiment,
the width narrowed back to its initial width of 1 nm.

irradiation chamber, the final power measured was 1.47 mW. The power reduction

versus increasing gamma radiation dose can be seen in Figure 8. YDF2 followed a

similar exponential power loss that was seen in the first experiment with YDF1. The

total power loss of YDF2 calculated was 13.7 dB/m. RIA increased for YDF2 and

YDF1 as the total gamma dose increased over time; this is shown in Figure 9. The

power loss, measured in dB/m, in both fibers increased linearly as the dose increased

roughly linearly with time. The spectral data, shown in Figure 13, also followed the

general trend in data collected with YDF1. These results show the lasing

wavelength shifted to shorter wavelengths (blueshift) as the gamma dose increased

in the fiber. The lasing spectrum for YDF2 started out sharper than YDF1, with its

peak at 1056 - 1058 nm. After 145 krad(Si) dose of gamma irradiation, the lasing

wavelength shifted to 1039 nm with a sharpness of roughly 1 nm.
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Figure 13. The lasing wavelength for the YDFL with YDF2 in the ring cavity. The
lasing wavelength shifted to shorter wavelengths as the total gamma irradiation dose
increased. The total shift in wavelength was roughly an 18 nm blueshift.

4.3.2.2 First Damage Recovery

The YDFL began to increase in power with active recovery after YDF2 was

raised out of the irradiation chamber. The power of the YDFL was 1.23 mW after

the elevator was raised to the up position. This marked the starting power for the

active recovery data for YDF2. The YDFL actively recovered for 1.7 hours and

experienced an 850 µW power increase. The YDFL was then shut off and remained

in the same position for two days. The morning of the second irradiation experiment

(2 days later), the YDFL was turned back on and allowed to recover for an

additional 1.5 hours. The starting power for the YDFL after its 40 hours of passive

recovery was 2.08 mW, which was the same power level observed the last time it

was on. This contradicts the first experiment where YDF1 increased in power by 68

µW after 18 hours of passive recovery. The possibilities as to why this happened

will be discussed in the analysis chapter. After the 1.5 hours of active damage

recovery the YDFL power was 2.59 mW, up 510 µW. The data for both active
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power recovery sessions can be seen in Figure 14. The spectral data for YDF2 for a

total dose of 145 krad(Si) indicated that the lasing wavelength redshifted 1 nm,

from 1039 nm to 1040 nm, with a slight broadening of the peak at the conclusion of

the second recovery time (labeled as “3.5 hours of recovery” in Figure 15).

4.3.2.3 Second Irradiation

YDF2 was not moved since being placed on the elevator for its initial irradiation

experiment. After its first irradiation experiment, the elevator was raised to remove

YDF2 from the irradiation chamber and two sessions of active recovery data were

collected. Then, keeping everything in place, the second and final 60Co gamma

irradiation experiment on YDF2 commenced. For this final gamma re-irradiation

experiment, YDF2 was exposed to an additional 107 krad(Si) dose of gamma

radiation. The power of the YDFL was slightly lowered to 2.33 mW once YDF2 had

been lowered into the 60Co chamber. Similar to the previous two experiments, the

power of the YDFL began to immediately decay moments after the YDF was

lowered into the irradiation chamber. YDF2 was left in the gamma cell for 3.25

hours, allowing the fiber to receive enough radiation damage to reduce the lasing

signal of the YDFL into the noise level of the OSA, shown in Figure 16.

Subsequently, since the YDFL was no longer lasing, it was removed from the

irradiation chamber. During its total time in the gamma irradiation cell, from both

experiments #2 and #3, YDF2 received a total gamma dose of 252 krad(Si). The

total YDFL power loss from this final experiment was 2.3 mW, which also followed

an exponential decay as seen in the previous two experiments. The power decay for

experiment #3 can be seen in Figure 17, which also exhibits the power decay from

the previous two experiments on YDF1 and YDF2. The total power loss for YDF2

in its second irradiation was 17.34 dB/m, evidenced in Figure 18. This was the
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Figure 14. The results for all power recovery data taken for YDF2. The power recovered
the fastest after the first irradiation, with an average power recovery slope of 0.28
mW/hr. After being irradiated a second time, the average recovery slope for the final
three recovery runs averaged 0.071 mW/hr. The greatest passive recovery was seen
between the final two runs after YDF2 was re-irradiated. The power recovered 227 µW
passively here, where all other passive recovery times for YDF2 did not yield any gain
in power.
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Figure 15. The results for all power recovery spectral data taken for YDF2. The
lasing wavelength redshifted a total of 1 nm during the active recovery experiment.
The spectrum also showed a slight broadening of the peak, roughly 1.5 nm, at the
conclusion of the active recovery time.
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highest power loss out of the three experiments with the shortest irradiation time.

The lasing wavelength of the YDFL blueshifted slightly once exposed to

irradiation. The initial lasing wavelength for the YDFL was 1040 nm, and after a

total dose of 228.7 krad(Si) shifted to 1038.5 nm. After receiving a total dose of 252

krad(Si) the signal at the lasing wavelength could no longer be distinguished above

the noise level of the OSA. The total spectrum shift from a pristine YDF2 to a total

gamma dose of 252 krad(Si) is shown in Figure 19.

4.3.2.4 Second Damage Recovery

Once the lasing signal was no longer apparent in the OSA measurements, the

elevator to the gamma irradiation cell was raised to allow YDF2 to recover. The

fiber, as in the past two experiments, was allowed to recover while still attached to

the elevator immediately following irradiation (labeled “re-irradiation” in Figure

14). YDF2 recovered for 2.25 hours where it experienced an increase in power of 195

µW. At the conclusion of this recovery period, the YDF was removed from the

elevator. While removing YDF2 from the elevator, one of the spliced connector

fibers broke off from the YDF. This connector fiber was spliced back onto YDF2 the

next day in the lab. It should be noted that a small portion of the YDF and the

connector fiber was cut away in order to have pristine cleaved ends to splice

together. Therefore, any recovery data after the immediate recovery data for the

re-irradiation experiment will be with an YDF and connector fiber that are both

roughly 25 mm shorter. When YDF2 was connected back to the YDFL in the lab,

the initial power reading was down 6 µW from the last power reading taken before

the YDF was removed from the elevator. The power loss experienced here is

assumed to be from the re-splicing of the connector fiber to the YDF. This power

loss would make it difficult to determine if any passive power recovery occurred
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Figure 16. The lasing wavelength for the YDFL with YDF2 in the ring cavity. The
lasing wavelength shifted to shorter wavelengths as the total gamma irradiation dose
increased. The total shift in wavelength was roughly a 1.5 nm blueshift until the power
at that wavelength was practically zero.
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Figure 17. This figure shows the exponential decay in power with increasing dose. The
YDFL with YDF1 had a starting power of 22 mW which degraded to 416 µW after
a total dose of 145 krad(Si). The initial power for the YDFL employing YDF2 was
29 mW, and decreased exponentially to 1.47 mW after a 145 krad(Si) dose. After
actively recovering for 3.2 hours and passively recovering for 16 hours, YDF2 was irra-
diated again. The starting power for its second irradiation was 2.3 mW and degraded
exponentially to 45 µW after a total dose of 252 krad(Si).
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Figure 18. The total power loss for both YDF1 and YDF2. The power loss for each
fiber increased linearly with increasing gamma dose.
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Figure 19. The lasing wavelength can be seen to shift toward the blue side of the
spectrum with increasing gamma dose. The spectrum broadened to almost 20 nm
after a dose of 43.5 krad(Si), but then began to sharpen after receiving a dose of 78
krad(Si). Once the total dose approached 250 krad(Si), the lasing wavelength was
barely visible on the OSA.
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since the length of the YDF was shortened slightly.

The YDFL was setup in the lab, 22 hours post re-irradiation, and YDF2 was

connected to the ring cavity and actively recovered for 8 hours. During this time,

the power increased a total of 573 µW, up to 803 µW from 230 µW. The YDF was

disconnected once more from the YDFL in order to record recovery data for YDF1.

The following day, YDF2 was reconnected to the YDFL and actively recovered for

four more hours. Once connected, the initial power of the YDFL was higher than

the previous day. It had passively recovered 227 µW of power, almost half of its

active power recovery from the day prior, in roughly 19 hours. For the final four

hours of active recovery, YDF2 increased in power another 290 µW, leaving the final

recorded power at 1.32 mW.

Figure 20 shows that the sharp and narrow peak typical of a laser was no longer

seen at the start of recovery. The radiation damage suffered by YDF2 was

detrimental enough to prevent the laser from lasing. As the damage recovery began,

the power at the lasing wavelength started to rise, but was quite broad. While the

spectrum for the lasing signal was broad, a slight redshift could still be seen as the

signal began to recover power. A narrow lasing peak could not be distinguished

until the 2.5 hour point in the recovery experiment. From the time period of 2.5

hours to 6.5 hours, the peak rose in power and redshifted roughly 0.75 nm to 1039

nm. After this shift at 6.5 hours, no more shifts in lasing wavelength were seen for

the remainder of the active recovery experiment.

4.4 Summary

The power degradation of the YDFL was measured in-situ while, in-turn, two

YDFs were exposed to gamma irradiation from a 60Co source housed at OSU. Each

of the YDFs were separately installed as the gain medium for the YDFL, and were
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Figure 20. The lasing wavelength of the YDFL at the start of recovery cannot be seen.
As recovery time increased, the spectrum for the laser signal grew. At 2.5 hours of
recovery time, a peak emerged at 1038 nm, then redshifted slightly at 6.5 hours of
recovery time. After 6.5 hours, the peak of the YDFL signal did not shift any further.

exposed to 145 krad(Si) of gamma radiation. Additionally, a third experiment was

conducted on YDF2, exposing it to an additional 107 krad(Si) of gamma radiation

after it was allowed to actively and passively recover for periods of time, 1.5 hours

and 40 hours respectively. All three irradiation experiments exhibited exponential

power decay of the YDFL as the total dose of gamma irradiation increased with

time (32.3 krad/hr dose rate). Each of the three experiments suffered power losses

of 13.7 - 17.3 dB/m. The third experiment showed the lasing wavelength of the

YDFL completely extinguished as the total dose of gamma irradiation reached 252

krad(Si).

Active recovery data was taken immediately following each YDFs irradiation, as

well as hours and days after irradiation. Each of the YDFs exhibited passive power

recovery, at varied magnitudes. YDF1 saw passive power recovery each time the

fiber was left dark for hours and days following irradiation. However, YDF2 saw

only one instance of passive power recovery when it was left dark overnight.
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However, YDF2 had one connector fiber re-spliced since it broke off during

take-down upon completion of the third irradiation experiment. This is the most

probable reason passive power recovery was not seen for the first time the fiber was

left dark following its second irradiation dose. The active power recovery for both

YDFs were similar. Each time the YDFs were placed back into the ring of the

YDFL and the laser was turned on, the power would recover linearly with time.

The rates at which the power recovered were much larger with the initial dose of

150 krad(Si), and the immediate recovery and next morning recovery rates for both

YDFs were essentially the same. However, after allowing the fibers to sit dark for

two days, the active recovery rates dropped by an order of magnitude, indicating a

saturation of recovery had occurred.
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5. Results of Gamma/Neutron Irradiation on an YDFL

5.1 Chapter Overview

Three experiments were conducted by operating an YDFL in-situ during

exposure to mixed gamma/neutron radiation from the OSURR. The reactor was

run at low power for reactor experiment 1, and full power for experiments #2 and

#3. Each YDF, which connected to the YDFL by two 5 m passive patch fibers on

each side, was placed in the thermal column (TC) of the reactor at two different

positions and irradiated for 2.5 - 3.0 hours. The data collected from these

experiments were continuous power output of the YDFL and spectral measurements

from 650 to 1200 nm in half hour increments. Immediate recovery data was taken

for reactor experiments #1 and #2. Recovery data could not be taken at any other

time due to the fact that the connectors on the YDFs and the passive fibers

absorbed large enough neutron doses that made them too radioactive to be released

from the OSUNRL.

5.2 Experiment

5.2.1 Irradiation source description

The source for the reactor experiments was the OSURR, which is an open pool

type reactor with several beam ports and dry tubes, a thermal column, and other

irradiation facilities. For the reactor experiments conducted in this thesis, the

reactor was operated at three different power levels. The first reactor experiment

employed power levels of 50 W and 5 kW while the remaining two experiments were

at full power (450 kW). The YDFs for each experiment were placed in the TC of the

reactor to expose the fibers to thermal neutrons and gammas. At full reactor power,

the TC had a maximum neutron flux of 1010 n/cm2/s, but the irradiation rate for
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the gammas was unknown. The neutron flux was reduced from the maximum value

by placing the YDF further from the reactor’s core within the TC. This was done

for experiments #1 and #2, where the placement of the YDF is measured by how

deep the YDF was placed from the outer wall of the TC. For experiment #1, the

neutron flux was also reduced by operating the reactor at reduced power.

5.2.2 Experimental setup

The experimental layout for the irradiation experiments using the OSURR was

the same as the layout used for the 60Co experiments. The type of YDF used was

technically the same brand, Leikki YB1200-6/125DC; however, the YDF used for

the 60Co experiments came directly from the manufacturer while the YDF used for

the reactor experiments shipped from Thorlabs. This is mentioned because the

current on the laser diode controller had to be increased from 650 mA to 1 A in

order to achieve similar power output from the YDFL as seen with the 60Co

experiments. Each YDF was placed in the graphite TC of the reactor with a 5 m

length of passive fiber connected on each side of it. This allowed for the laser to be

setup outside the TC, ensuring the YDF and the FC/APC connectors to the passive

fibers were the only portions of the YDFL that received irradiation within the TC.

Each YDF was placed at a predetermined position inside the TC. For each reactor

experiment, the position and reactor power dictated the amount of neutron flux the

YDF being irradiated would experience. For the first two reactor experiments, the

YDF was placed 10.16 cm inside the TC, while the last reactor experiment was

conducted at 50.8 cm inside the TC. The YDF was spooled into three 63.5 mm

loops and taped to a flat piece of plastic that fit inside the TC that kept the YDF in

place. The passive fibers were taped to the outside face of the TC to restrict the

fibers from moving, and allowed for the metal door of the TC to slide in place
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without pinching the fibers. Once the reactor was turned on it took about 25

minutes for it to achieve the desired power level for the experiment. For reactor

experiment #1, the desired power was initially 50 W. After maintaining 50 W of

power for an hour the reactor power was raised to 5 kW. For the final two reactor

experiments, the reactor’s operating power was set to the maximum power of 450

kW. The irradiation times for experiments #1, #2, and #3 were 2.5 hours, 2.5

hours, and 3.0 hours respectfully. All parameters for the reactor experiments have

been summarized in Table 3 below. YDF4 was used twice because the last pristine

fiber to be used for reactor experiment #3 was broken upon placing it in the TC.

Since there was no way to fix the splice of the connector fiber to the pristine YDF,

YDF4 was used instead.

Table 3. Reactor experiments parameters

Reactor YDF TC Irradiation Reactor Neutron Total n

Experiment Position Time Power Flux Dose

# # (cm) (hrs) (kW) (n/cm2/s) (n/cm2)

1 3 10.16
1 0.050 1×105 3.6×108

1.5 5 1×107 5.4×1010

2 4 10.16 2.5 450 1×109 9.1×1012

3 4 50.80 3 450 1×1010 1.1×1014

5.3 Results and discussion

The output power of the YDFL was measured in-situ in order to determine the

RIA through the YDF as it was exposed to a mix of gamma and neutron radiation.

Also, spectral data was taken to observe how the radiation damage within the YDF

affects the YDFL’s spectrum, especially at the lasing wavelength. These results can

then be compared with the results from the 60Co experiments to determine how

radiation types, irradiation rates, and total doses affect an active YDFL.
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5.3.1 YDF3 Irradiation - Reactor Experiment #1

The power degradation of the YDFL for the first reactor experiment was much

lower than previously seen in the 60Co experiments. The YDFL’s power before

irradiation was 21.5 mW. During the 24 minutes it took to bring the reactor up to

50 W of power, the power from the YDFL decayed to 20.53 mW. The power for the

reactor remained at 50 W for approximately one hour. During this time the power

of the YDFL decayed only 0.7 mW, from 20.53 to 19.83 mW. The reactor was

operated at 5 kW for the remaining two hours of the experiment. While the reactor

power was increased by a factor of 100, the degradation of power seen in the YDFL

remained slow, approximately 0.5 mW an hour. After two hours of irradiation time

at the increased reactor power, the power of the YDFL reduced from 19.83 to 19.03

mW. The power of the YDFL versus the total neutron dose can be seen in Figure

21. The sharpest decrease in power for the YDFL in this experiment was seen as the

reactor was brought up to power. The spectral data does not show a blueshift in the

lasing wavelength of the YDFL as it did previously in the gamma only irradiation

experiments. Figure 22 shows the spectrum of the YDFL at the lasing wavelength

remains practically unaltered as the total neutron dose increased over time. Only

the amplitude of the three main modes changed as the total dose increased.

5.3.2 YDF4 Irradiation - Reactor Experiments #2 and #3

5.3.2.1 First Irradiation - Reactor Experiment #2

The initial power of the YDFL with a pristine YDF (YDF4) positioned 10.16 cm

deep in the TC was 23.48 mW. The reactor took 22 minutes to achieve maximum

power, during which the YDFL decreased in power by 0.68 mW. After the

maximum reactor power was achieved, the YDFL began to decrease at a higher rate

compared to the first reactor experiment. The neutron flux for reactor experiment
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Figure 21. A continuous decrease in power was seen for both reactor power levels of
50 W and 5 kW. The blue vertical lines represent the time at which the desired power
levels were achieved. The sharpest decrease in power happened after the reactor was
turned on and brought up to power. After the reactor attained 50 W of power, the
degradation in the YDFL power slowed from the initial degradation slope. Once the
power in the reactor reached 5 kW, the power degradation in the YDFL remained
roughly the same as it was for the reactor power of 50 W. The dips in YDFL power at
the 0.25 and 1.75 hour marks are uncharacteristic of previous gamma only irradiation
data. However, the power recovers and follows the slopes previously seen.
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Figure 22. The peaks of the individual modes in the YDFL changed in amplitude,
but the wavelength did not shift significantly as the total dose increased in YDF3 for
reactor experiment #1.
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#2 was roughly 2 and 4 orders of magnitude greater than the fluxes used in the first

reactor experiment. The YDFL was irradiated for approximately 2.5 hours with a

neutron flux of 1 ×109 n/cm2/s which caused RIA in the YDF of 0.65 dB/m. The

RIA for all three reactor experiments is shown in Figure 23. The spectral data for

experiment #2, shown in Figure 24, exhibited the least amount of change for all

three reactor experiments. Only small amplitude changes were seen in the lasing

modes for the YDFL, with the most significant change being 15 dB/m in the peak

amplitude of the furthest mode to the right.

5.3.2.2 Second Irradiation - Reactor Test #3

The final reactor experiment utilized the highest possible neutron flux within the

TC, which was the highest neutron flux used for the three reactor experiments, of 1

×1010 n/cm2/s. This final experiment for the reactor experiments mirrors the third

experiment performed in the 60Co irradiation chamber as it takes the YDF

irradiated from the previous experiment and re-irradiates it. This happened out of

necessity as the last available pristine YDF was broken apart (FC/APC connector

fiber splicing broke) attempting to position it within the TC. Therefore a previously

irradiated YDF (YDF4) had to be substituted for this experiment. This YDF had

already received a neutron dose of 9.1 ×1012 n/cm2 from the previous experiment.

For its re-irradiation, YDF4 was placed deeper within the TC at 50.80 cm to

achieve the highest neutron flux possible. The YDF was then irradiated for three

hours and the degradation in power was continuously monitored with spectral data

taken in half hour increments. During this experiment the RIA within the fiber

increased from 0.9 to 6.3 dB/m. Despite the fact that this experiment was a

re-irradiation of YDF4, the RIA increased at a similar rate to reactor experiment

#2 (once the total neutron dose in the YDF had exceeded 1012 n/cm2). This
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Figure 23. Radiation induced attenuation for all three reactor experiments (RE #1 -
RE #3). YDF3 was exposed to the smallest neutron flux of 1 ×105 and 1 ×107 n/cm2/s.
While the final two experiments had increased fluxes of 1 ×109 and 1 ×1010 n/cm2/s
respectfully. The RIA increases slowly as the total neutron dose increases from 105

up to 1012 n/cm2/s. At this point the RIA begins to increase rapidly up to the total
neutron dose of 1.2 ×1014 n/cm2.
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Figure 24. The peaks of the individual modes in the YDFL slightly changed in am-
plitude, but no wavelength shifting occurred as the total dose increased in YDF3 for
reactor experiment #2.
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comparison can be seen in Figure 23. The spectral data for reactor experiment #3

was the least similar to the spectral data from the previous two experiments. The

modes of the laser were not as well defined for the YDFL here as they were

previously for the first two reactor experiments (see Figure 25).

5.3.3 Temperature dependence of absorption

The temperature of the fibers in an YDFL have a significant effect on how the

laser performs and is characterized. According to Moore’s study in 2011, the

absorption coefficient increases with increasing temperature for wavelengths in the

1000 - 1120 nm range and decreases for wavelengths in the 900 - 1000 nm range [37].

For a temperature increase from 26 ◦C to 80 ◦C the absorption for 1060 nm

increased 1.5 dB/m. When the temperature of the fiber was >600 ◦C there was a

much larger absorption of 15 dB/m. The reduction in population inversion of the

2F5/2 level is responsible for the increased absorption by reducing the number of

transitions at the 1010 - 1100 nm range (see Figure 2). The reduction in population

inversion occurs from the temperature increase of the fiber. The thermal energy

added by heating the fiber causes the ions in the ground state to thermally excite to

the middle levels in the 2F7/2 level, thereby reducing the amount of ions available in

the ground state that can be pumped by the pump laser into the upper excited

2F5/2 level.

The temperature of the TC for the OSURR was not actively controlled nor

monitored during the reactor experiments. Due to its distance from the reactor and

the inherent openness of the TC itself, it was assumed that the temperature of the

YDF in the TC was the same ambient temperature of the facility, roughly 19 ◦C.

Since there was little to no change in temperature of the facility during the reactor

experiments, it can be assumed that there was no temperature induced increase of
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Figure 25. The peaks of the individual modes in the YDFL slightly changed ampli-
tude, but no wavelength shifting occurred as total dose increased in YDF3 for reactor
experiment #3.

absorption at the signal wavelength for the YDFL.

5.4 Recovery Data

Recovery data for the first two reactor experiments were taken. The time frame

for the recovery data was quite limited due to the scheduling of reactor time and the

inability to remove the YDFs from the OSURR due to their radioactivity.

Therefore, the reactor recovery data will not be easily comparable to the 60Co

recovery data since the recovery data collection times were significantly shorter and

less conclusive. However, the setup for the recovery data is similar to the process in

which the 60Co recovery data was collected. The YDFL remained on during the five

minutes it took the reactor to shut down. Once the reactor completed shut down,

the recovery data was recorded with everything still in place as it was for the

irradiation (no movement of fibers like there was in the 60Co recovery data).

62



5.4.1 YDF3 - Recovery Data

Recovery data for the first reactor experiment was only conducted immediately

following the irradiation of YDF3. Data was collected for 56 minutes, seen in Figure

26; during this time, the power in the YDFL continued to decline as it had when it

was being irradiated with mixed neutron and gamma radiation. The decay in power

seen below was roughly 0.3 mW/hr, which was close to the 0.5 mW/hr power decay

rate seen while the YDF was being irradiated. At the 20 minute mark there was a

spike in power of the YDFL, from 18.90 to 19.01 mW, but then the power continued

to decay at the same rate. Twenty minutes later, there was a sharp decrease in

power which seemed to be a resetting of the previous spike in power. The power

decay rate remained constant throughout the recovery data despite the spike and

subsequent drop in power. No other recovery data could be collected for YDF3.

5.4.2 YDF4 - Recovery Data

Recovery data was taken for reactor experiment #2 immediately after YDF4

was irradiated and during the following morning (18.5 hours post-irradiation). For

the 28 minutes of active recovery done immediately following irradiation, the power

of the YDFL increased 50 µW after about five minutes. After the initial, slight

power gain, the power stayed at the same level of 20.2 mW for the remainder of that

recovery session until the YDFL was shut off. The following morning, when the

YDFL was turned back on, the initial power reading was 21.1 mW, up 0.9 mW from

the previous day. However, the power quickly dropped 0.5 mW within the first two

minutes of active recovery. Following this point, the power continued to decay more

slowly to 20.45 mW over the course of 25 minutes. Just prior to the conclusion of

this recovery session, the power spiked up 0.20 mW and then leveled off at 20.6 mW

for the last two minutes of the session. This seems to be an anomaly as it was not
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Figure 26. The immediate recovery data following reactor experiment #1 shows a
continuing decrease in power over the course of 55 min, despite a spike and subsequent
drop in power 20 min later. The YDFL does not experience a recovery in power because
the connectors on the YDF absorbed enough radiation to be radioactive themselves.
The decay in power seen here is roughly 0.3 mW/hr, which is close to the 0.5 mW/hr
power decay rate seen during irradiation.

seen in any other of the experiments.

5.5 Summary

The degradation in power of the YDFL was measured continuously for three

separate experiments where two YDFs were exposed to irradiation from a mixed

gamma and neutron source at the OSURR. The OSURR is a mixed

gamma/neutron irradiation source, however, only the neutron flux was known for

the TC. The neutron flux was controlled by placement of the YDF in the TC and

the power of the reactor. Each reactor experiment was run between 2.5 - 3.0 hours.

The flux for each of the three reactor experiments were as follows: 105 and 107, 109,

and 1010 n/cm2/s. Other parameters for each reactor experiment has been

summarized in Table 3. Each of the irradiated YDFs showed a steady increase in
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Figure 27. The immediate recovery data for reactor experiment #2, where YDF4 was
exposed to a total neutron dose 9.1×1012 n/cm2, shows an increase in power of 50 µW
over the first 6 minutes. For the remaining 20 minutes, the power levels out and no
longer recovers. The recovery data for the following morning shows a passive recovery
of 1 mW once the laser was turned back on. However, the power drops sharply within
the first minute and then continues to decay until the 55 minute mark. At the 55
minute mark the power spiked up 0.2 mW and then leveled out for the last 2 minutes
of data.
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RIA with an increase in total neutron dose over time. The increase in RIA with the

reactor experiments were consistent with one another, but the RIA was roughly half

of what was experienced in the 60Co experiments.

For the first two reactor experiments, immediately following the shut down of the

reactor, the YDFL remained on and recovery data was collected. YDF3 was allowed

to actively recover for 56 minutes, while YDF4 was allowed to actively recover for a

total of 58 minutes between two days. The recovery data for these reactor

experiments did not show significant annealing as seen in the 60Co recovery data.

The power for both YDFs continued to decrease during the active recovery times.

However for YDF4, a slight power increase of 50 µW was observed within the first 6

minutes of active recovery. This was likely due to an increase in temperature of the

fiber as the light was passing through it. The continued power degradation seen is

likely due to the connectors on the YDF and passive fibers had absorbed enough

radiation to become radioactive themselves. Measurements were taken with a

Geiger counter to determine the radioactivity of the connectors, either immediately

following the experiment (experiment #1) or the next morning (experiment #2),

and for both experiments they measured approximately 6 - 10 mrem/hr.
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6. Analysis and Conclusions

6.1 Comparing Results with Experiments from Literature

The focus of this thesis was to supplement existing literature on RE-doped fibers

that did not include radiation sensitivity experiments on active YDFLs. The power

degradation on an active YDFL caused from irradiation by gamma and mixed

neutron/gamma radiation was recorded. The power loss seen was consistent with

several other published results on RE-doped fibers and fiber optic systems in both

passive and active configurations. Exact comparisons cannot be made with the

experimental results from this thesis to other published results due to many factors

that differed between experiments. Some, but not all, examples of how the

experiments differed from the experiments presented in this thesis include the

following: the type of RE-dopant used in the silica, doping concentrations, fiber core

and cladding sizes, doped fiber length, irradiation rate, total dose, passive or active

configurations, etc. Therefore, only rough comparisons were made concerning the

trend of power decay, the RIA seen within the RE-doped fiber/amplifier/laser, and

active and passive recovery rates.

In each irradiation experiment conducted for this thesis, increasing the total dose

resulted in the loss of power. The power decayed exponentially as the total dose

increased linearly over time. This exponential decrease in power is in agreement

with other published results on the irradiation of RE-doped fibers and/or amplifiers.

For example, Fox et al. published results in 2009 of an active YDFA irradiated with

a 60Co gamma source at a rate of 0.116 rad(Si)/s. Fox reported an exponential

decrease in power of the signal wavelength from 780 mW to 137 mW after a total

dose of 7.6 krad(Si) was achieved [17]. This equates to a RIA of 2.52 dB/m. The

RIA seen in Fox’s experiment was much higher than the RIA for the YDFL seen in
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the experiments conducted for this thesis by roughly 1.7 dB/m. The difference could

be from the type of YDF used, the length of the fiber used (3 m for Fox compared

to 1 m for this thesis), or the difference in dose rate (Fox’s rate was quite low).

Table 4 summarizes the results of gamma irradiation experiments conducted in this

work (t.w.) as well as results from other published experiments on RE-doped fibers

and systems. It was thought that irradiating the YDFL while it was actively lasing

would help to prevent the creation of certain color centers within the fiber, thereby

reducing the RIA over time. However, the degree to which this occurred was hard to

determine since there was a lack of similarity between other published experiments.

Table 4 also compares the RIA from this thesis at each total dose (TD) achieved

in each experiment in the table (last column). The last column, with the exception

of the second row, shows the values for YDF1 and YDF2 separated by a slash (/).

The RIA for YDF2 after a total dose of 200 krad(Si) was calculated to compare

with the results from Fox, et al. in 2007 [38]. This was done by adding the RIA

from the first irradiation of YDF2, at a total dose of 145 krad(Si), to the RIA of

YDF2 seen at 200 krad(Si). The data from which these results were derived can be

seen plotted in Figure 18. Analysis for this figure used the initial power reading of

the YDFL, just before the experiments began, as the Pin values for calculating RIA

using equation 3. The power of the YDFL at the beginning of each experiment was

used, rather than the initial power of the YDFL from experiment #2. If each initial

power measurement had been used, a discontinuity between the RIA at the end of

experiment #2 and the beginning of experiment #3 would have been seen (since the

power had recovered some, decreasing RIA). YDF2 was the only fiber to receive a

total dose greater than 145 krad(Si); this information is recorded in the last column

in the second row in Table 4.

The RIA for the YDFL was higher than some results and lower than other
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Table 4. Gamma irradiation experimental results compared

Reference RE-dopant Dose Total RIA at T.w.’s RIA

Year and Rate Dose TD at current

Citation Configuration rad(Si)/s krad(Si) dB/m row’s TD

Fox 2009 [17] Active YDFA 0.116 7.6 2.5 0.744/0.851

Fox 2010 [39] Passive YDF 40.1 35 4.2 3.6/3.7

Girard 2012 [11] Active EDFA 0.3 35 0.5 3.6/3.7

Alam 2007 [18] Active EDF 4.5 91.0 23 8.3/9.3

Singleton 2014 [2] Active YDFA 6/11 100 1.4-4.0 9.3/10.5

Poulin 2016 [t.w.] Active YDFL 9 145 14-17 YDF1/YDF2

Fox 2007 [38] Passive E/YDF 14.3/40.1 200 16 -/21.3

results published in the literature, which are shown in Table 4. For example, the

RIA in the data from this work was much higher than the RIA published by

Singleton, but lower than the RIA published by Fox. Singleton’s experiments in [2]

determined the radiation sensitivity of YDFs similar to those used in the

experiments from this thesis. However, the fibers were configured as an active

YDFA as opposed to an active YDFL, and the YDF she used had a core size of 20

µm rather than the 6 µm core used in this work. In this case, the YDFs exhibited

less radiation sensitivity when configured as an amplifier than when configured as a

laser. Conversely, the results published by Fox in [39] on passively irradiated YDFs

showed higher radiation sensitivity than that of the active YDFL irradiation data

presented in this thesis. However, because experimental configurations and

doped-fiber characteristics differed between the experiments used for comparison, no

trends or correlations between the results in Table 4 are evident, other than the

exponential decrease in power due to an increase in total dose previously mentioned.

There were relatively few publications in the literature on mixed gamma/neutron

irradiation experiments to which the results from this thesis could be compared.

Lezius et al. published results in 2012 of neutron irradiation on active EDFs with a
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neutron flux of roughly 3×104 n/cm2/s. His results showed a shallow exponential

increase of RIA, less than 1%, with a total neutron dose of about 5×108 n/cm2 [6].

The neutron flux varied from 1×105 - 1×107 n/cm2/s for the first experiment

conducted on the YDFL with the OSURR. However, the neutron radiation

produced by the reactor also contained an unknown amount of gamma irradiation.

The RIA for this experiment on the YDFL was 0.47 dB/m after a total dose of

5.4×1010 n/cm2. These results align to some degree with the results and conclusions

drawn from Lezius et al., specifically, that the neutron irradiation degrades the

transmission through the fiber very weakly. The higher values for the results

published here may be due to the neutron irradiation being mixed with an unknown

amount of gamma irradiation from the reactor causing a higher RIA in the YDFL.

However, the neutron flux of Lezius’ experiment was also an order of magnitude

smaller than the first reactor experiment presented here. It’s also important to note

that the energy of the neutrons in Lezius’ experiment were 20 and 180 MeV while

the neutrons for the reactor experiments presented in this thesis were less than 0.5

eV. The higher energy neutrons used in Lezius’ experiment would react less with the

fiber during irradiation, therefore producing less absorption in the fiber.

6.2 RIA Power Law Fit

6.2.1 Gamma Only Experiments

The power law fit is a common method to model the RIA seen from irradiation

of the fiber [2, 6, 8, 40, 41, 42, 43] . The power law, shown in equation 5, is a

function of the radiation dose, D, and is dependent on two variables, α and β , that

are specific to the type of fiber used.

RIA(D) = αDβ (5)
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The RIA within the YDFL was calculated from the power measurements and

the results from the gamma only experiments will be discussed and analyzed. The

RIA for experiments #1 and #2 were 17.16 and 13.62 dB/m with a total dose of

145 krad(Si), and the RIA for experiment #3 (the re-irradiation of YDF2) was

17.35 dB/m with a total dose of 250 krad(Si). The power law fit for gamma only

experiments #1 and #2 are shown in Figure 28. The value for β was varied from

0.7 - 1.0 in order to find the smallest difference of α values for each of the first two

gamma only experiments. This was accomplished when β was set to 1.0 and the

delta of the α values was 0.0152. The R2 values for the power law fitted to the RIA

data were 0.9935 for experiment #1, and 0.9978 for experiment #2.

The power law fit for Experiment #3 will be analyzed two different ways. The

first case, case #1, will be fit to the power law using the true total dose that YDF2

was exposed to. This means the dose from the previous experiment (145 krad(Si)

from the first irradiation of YDF2) was included. Case #2 was constructed to

compare, using similar conditions, the power law fit from experiment #3 with the

power law fits from the previous two experiments. This was done by adjusting the

conditions for how the data was presented. This was done by excluding the total

dose from the previous experiment (experiment #2). In other words, the gamma

dose for the start of experiment #3 was set to 0 krad(Si), and the RIA was

calculated so the initial power measurement of the YDFL just before re-irradiation

was used as the Pin value in equation 3. Doing this set the RIA to 0 dB/m at the

beginning of the experiment #3 for this case.

The power law fit for case #1 of reactor experiment #3 did not fit as well to the

RIA data as the first two reactor experiments did. For case #1, the value of β was

limited to the range of 0.7 - 1.0, but fit best at 0.9591, while α was fixed to 0.1209,

the same value of α used in the power law fit from experiment #2. The goodness of
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Figure 28. The power law fits for YDF1 and YDF2 with β fixed at 1.0. The difference
between the α values for each YDF was the smallest when β was set to 1.0. Therefore,
there is high confidence that the power law is a good model for the YDF used in these
experiments up to a maximum dose of 150 krad(Si).

fit, the R2 value, was 0.7859, and is shown in Figure 29.

The goodness of fit for the power law fit to RIA in case #2 was higher than case

#1. The R2 value improved to 0.9816. This value was achieved by setting β to 1.0

and fixing α to 0.1209, the value which was used in the power law fit for experiment

#2. The power law fit versus RIA for case #2 can be seen in Figure 30.

Upon completion of experiment #2, YDF2 was allowed to actively and passively

recover for 2 and 30 hours respectively. This recovery period reduced the RIA by

2.65 dB/m and likely repaired some of the unstable color centers (shorter lifetimes).

The unstable color centers require less energy to be annealed than other color

centers that have longer lifetimes. Both passive and active recovery occurred in the

gamma only recovery experiments. In these recovery experiments, passive recovery

occurred at room temperature over the course of 18 and 90 hours, resulting in power

recovery of 100 and 550 µW respectively. Furthermore, the active recovery resulted

in much higher gain over the course of several hours. This was seen in active
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Figure 29. Experiment #3, the re-irradiation of YDF2, with the total dose from the
previous experiment, the first irradiation of YDF2, included (case #1). The value of
β was limited to the range of 0.7 - 1.0, but fit best at 0.951, while α was fixed at
the experiment #2 value of 0.1209. These conditions produced an R2 value of 0.7859,
which was the worst fit for all of the gamma only experimental analysis.
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Figure 30. Experiment #3, the re-irradiation of YDF2, with the total dose from the
previous experiment, the first irradiation of YDF2, excluded (case #2). Using these
parameters, the power law fit improved with an R2 value of 0.9816 compared to the fit
produced when the gamma dose from experiment #2 was included. For this case, the
best fit occurred with β set to 1.0, with α again fixed to 0.1209, the value which was
used in the power law fit for experiment #2
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recovery experiment #1, when the YDFL was turned back on after being off for 18

hours (where it passively recovered 100 µW of power). Within the first 10 minutes

of the YDFL being back on the power increased 100 µW. This was the same power

recovery seen over a passive recovery period, but in 9.3% of the time. This implies

that adding energy to the YDF, in this case allowing it to lase, decreases the time it

takes for the unstable color centers to return to the ground state on their own. The

fact that the color centers get repaired at higher rates when the YDFL is on might

be the reason the RIA was less than what the power law predicted, up to a total

dose of 210 krad(Si), for case #1. Following this total dose, the RIA becomes higher

than the predicted values with the power law. This suggests that the fiber

dependent variables, α and β, of the power law may need to be adjusted as the total

dose exceeds 210 krad(Si).

Another point can be made when comparing the power law fits for experiment

#1 and #2 to the respective RIA data. The power of the YDFL was 7.4 mW higher

for experiment #2 than it was for experiment #1. The increased power of the

YDFL in experiment #2 could be the reason why the RIA in experiment #2 was

lower than the RIA in experiment #1. Both of these experiments were conducted

exactly the same, including the current and temperature settings of the pump

laser’s controller. The only difference was the initial power of the YDFL with its

respective YDF connected as the gain medium. The increased power must help to

prevent the creation of certain (less stable) color centers within the YDF through

bleaching, and could also have repaired more color centers (from actively lasing)

with short lifetimes during the irradiation.
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6.2.2 Mixed Gamma/Neutron Experiments

The power law was used to model the RIA for the given neutron fluence for each

mixed gamma/neutron experiment (reactor experiments), and the power law

accurately modeled the RIA for reactor experiments #2 and #3. The power law did

not fit well to the RIA calculated for reactor experiment #1 when β was restricted

to the 0.7 - 1.0 range. In order for the power law to best model the RIA seen in

reactor experiment #1, the restriction on β had to be removed. The values for β

that provided the best fit for the power law to the RIA data was 0.2366 and 0.1498

for neutron fluxes of 105 and 107 n/cm2/s respectively. The values of α for these two

power law fits were 0.0027 and 0.0107. The R2 value for these two power law fits

were 0.9068 and 0.8885, and is shown in Figure 31. The neutron flux was very low

in this experiment, and while the gamma dose rate was unknown, the data proves

that it too was quite low. This is why the power law does not fit well using the

typical constraints on β. There was not enough gamma radiation present to produce

a high enough concentration of color centers to cause β to fall between 0.7 - 1.0.

The power law, under this constraint, must have some minimum gamma dose rate

in order to accurately predict the RIA that will occur from irradiation.

The power law fit to the RIA seen in reactor experiments #2 and #3 are shown

in Figures 32 and 33 respectively. The value for β was varied from 0.7 - 1.0 in order

to find the smallest difference in α between these two experiments. The value of β

where this occurred was 0.975. This resulted in a difference in the α values of

4.0×10−14. The R2 value for the Power Law fit to the RIA were 0.9553 and 0.9844

for experiments #2 and #3 respectively. Because the R2 value is high for both

experiments, the Power Law fit using the specified values of α and β for the YDF

used in this thesis is a good model to predict RIA at the neutron fluences utilized in

these two experiments.
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Figure 31. The power law fits for reactor experiment #1. In order to get an R2 value
above 0.50, the values for β could not be restricted in the normal range of 0.7 - 1.0,
as was done in all other instances. The reduced value of β for the power law fits here
show that the low neutron fluxes for this experiment do not cause a significant number
of color centers to be produced within the YDF.
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Figure 32. The power law fit has a goodness of fit to the actual RIA data of 0.9553. The
value for β was allowed to vary from 0.7 - 1.0 and the final value used was determined
by which β gave the closest two values of α between experiments #2 and #3. The
value for β where this occurred is 0.975.
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Figure 33. The power law fit has a goodness of fit to the actual RIA data of 0.9844. The
value for β was allowed to vary from 0.7 - 1.0 and the final value used was determined
by which β gave the closest two values of α between experiments #2 and #3. The
value for β where this occurred is 0.975.

6.3 Spectral Analysis

Analysis of the spectra data collected by the OSA in the gamma only

experiments helped determine the affect of radiation on the YDFL. The

pre-irradiation spectrum of the lasing wavelength of the YDFL was approximately

20 nm in width, indicating there were several modes lasing simultaneously. After a

total dose of 145 krad(Si), the lasing wavelength of the YDFL blueshifted a total of

13 and 15 nm for YDF1 and YDF2 respectively. Additionally, the pre-irradiated

spectrum and the irradiated spectrum with a total dose of less than 75 krad(Si)

indicated significant ASE, especially in the 1045 - 1055 nm range. The peak of the

lasing wavelength sharpened after a total gamma dose of 75 krad(Si). The cause of

this sharpening is likely from the formation of color centers that are specifically

absorbing the pump signal, thereby reducing the amount of excited Yb3+ ions

within the YDF. With less excited Yb3+ ions in the YDF, the amount of ASE
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within the YDFL is reduced. Finally, the spectra data of the YDFL evidenced the

termination of the lasing peak after the YDF was exposed to a total dose of 230

krad(Si). This may be due to the production of color centers in the fiber, which

absorbed enough of the pump signal and lasing signal to prevent the cascading

effect (photon multiplication from stimulated emission) from occurring.

The spectra data for the reactor experiments, unlike the gamma only

experiments, did not exhibit any significant shifting in wavelength of the YDFL.

Instead, there were 3-5 significant lasing peaks in the spectrum that exhibited slight

increases or decreases in power, but no shifting. Only in the third reactor

experiment did a slight 0.5 - 1.0 nm blueshift occur in the lasing wavelength.

Although the dose rate for the gamma radiation in the reactor experiments was

unknown, analysis of the spectra data for these experiments indicated the gamma

dose rate must have been significantly less than the 32.7 krad(Si)/hr dose rate

produced in the gamma only experiments. The neutron radiation is not a significant

source for creation of color centers in the YDFL. This is evidenced by the low RIA

produced in all three reactor experiments. The highest RIA from the mixed

gamma/neutron experiments, specifically from reactor experiment #3, was roughly

1/3 - 1/2 of the RIA reported from the gamma only experiments.

6.4 Active Recovery Analysis

The purpose of the active recovery experiments was to determine the rate at

which color centers in the YDFL were repaired (annealed) at room temperature.

When the color centers are repaired, the trapped electrons in the silica lattice are

removed, which in-turn, reduces the amount of RIA in the fiber. Only the active

recovery data collected from the YDFs irradiated by the 60Co gamma source will be

analyzed below. The recovery experiments that immediately followed irradiation
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from the OSURR did not experience any significant power recovery. Furthermore,

the YDFs irradiated by the OSURR could not be moved to the lab for several weeks

due to OSU’s radioactive safety constraints. This prevented any further active

recovery experiments for the YDFs irradiated by the OSURR in this thesis.

The active recovery data for YDF1 and YDF2 was analyzed at various points

following the irradiation experiments. The goal was to determine how long it would

take the YDFL to actively recover all of the power lost from radiation damage.

While the YDFL was never left on long enough to achieve full power recovery, the

time it would take to recover fully was estimated by determining the slopes (recovery

rates) from the recovery data in Figures 11 and 14. These recovery rates and the

calculated recovery times are summarized in Table 5. The recovery rates for each

YDF diminished as the number of days after irradiation increased. The exception to

this was the active recovery experiment performed the morning after the irradiation

of YDF1 (labeled “Next morning recovery” in Table 5). This experiment

experienced a higher recovery rate when compared to the rate immediately following

irradiation. The active recovery time for the “Next morning recovery” experiment

was only 20 minutes, the shortest active recovery time for all recovery experiments.

Also, the recovery rate for the last recovery experiment on YDF2 was basically the

same recovery rate seen on the previous day. This shows that there is a saturation

of the active recovery rate at room temperature. The saturation of recovery likely

stems from the lifetimes of the color centers. The less stable color centers can be

annealed faster than longer lived, more stable color centers by adding energy into

the system (actively running the laser). Once the less stable color centers have been

annealed, only the longer lived color centers, which are not affected by low

temperature annealing, remain. YDF2 received a second dose of gammas on the

second day of testing. Following the re-irradiation of YDF2, its active recovery rate
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dropped 31% from the recovery rate that same morning before re-irradiation. This

suggests that as the total dose increases, the rate at which the YDFL anneals

declines significantly. The number of color centers created within the YDFL will

increase as it is exposed to higher doses of radiation. Therefore, the recovery time

will also increase from the increased number of color centers present in the YDFL.

Table 5. Active recovery analysis for YDF1 and YDF2.

YDF1 Recovery Time to Full Power

Initial Power: 22 mW Rate (mW/hr) Recovery (days)

Immediate recovery 0.23 3.84

Next morning recovery 0.35 2.55

Day 5 recovery 0.11 7.77

Day 6 recovery 0.049 15.98

YDF2 Recovery Time to Full Power

Initial Power: 29 mW Rate (mW/hr) Recovery (days)

Immediate recovery 0.40 2.88

Next morning recovery 0.26 4.26

Immediate re-irradiation recovery 0.079 15.18

Day 4 recovery 0.067 17.90

Day 5 recovery 0.066 17.70

Dicks published an experiment conducted on an YDFA that was exposed to a

100 krad(Si) dose of gamma radiation from a 60Co source. The YDFA in Dicks’

study experienced a 31% reduction in power from the radiation damage but

achieved complete passive recovery of the YDFA after being in room temperature

storage for two years [34]. The time line for this thesis prevented an in depth study

of passive recovery on the irradiated YDFL due to the significant amount of time

passive recovery at room temperature takes.
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6.5 Conclusions

The comparison of the results presented in this thesis to the literature on

radiation sensitivity of RE-doped fibers supports Lezius’ conclusions in [6], the same

study from Lezius discussed earlier in section 6.1. Predicting how a fiber will be

affected by radiation is difficult because radiation sensitivity is dependent on a

number of factors including: the dopant elements and concentrations, the co-dopant

elements and concentrations, the system configuration (irradiated as a fiber,

amplifier, or laser), and the type of radiation the fiber was exposed to [5, 6, 44, 45].

Therefore, actually irradiating the fiber in representative conditions will provide the

most accurate results in determining the radiation sensitivity of the fiber. However,

the analysis of the results from these experiments indicated that the power law can

be used to predict RIA confidently under the gamma irradiation conditions explored

in this work (32.7 krad(Si)/hr).

The results from the gamma only and mixed gamma/neutron experiments

indicated that the power of the YDFL decreased exponentially with increased

radiation dose. The power degradation in these experiments reflected a similar

trend to other published results on radiation effects on RE-doped fibers and

RE-doped fiber systems (as seen in Table 4). The maximum power loss of the

YDFL was 98% for the gamma only experiments, and 77% for the reactor

experiments. The initial power of the YDFL in experiment #2 was 7.4 mW higher

than in experiment #1, which resulted in less RIA in experiment #2 than in

experiment #1. This suggests that a higher initial power for the YDFL prevented

the creation of certain color centers within the YDF, reducing RIA.

The power law fit was used to model the RIA in the fiber. The power law fit

modeled the experimental results accurately, with fitting results (R2) ranging from

0.9591 - 0.9978 and 0.8885 - 0.9844 for the gamma only and the mixed
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gamma/neutron experiments respectively. However, once the total dose exceeded

210 krad(Si) in gamma experiment #3, the RIA from the power law fit was less

than the experimental results. This suggests that the fiber dependent variables, α

and β, may need to be adjusted if the total dose will exceed 210 krad(Si). For

reactor experiment #1, the data suggests that the dose rate for gamma irradiation

was low enough that the power law fit, using the typical constraints on αand β, was

not a good model for RIA. Instead, β may need to be reduced to less than 0.7 in

order to properly model the RIA at gamma dose rates less than 32.7 krad(Si)/hr.

Power recovery experiments were conducted post irradiation with the fiber laser

off and actively lasing. The power passively recovered 100 and 550 µW in 18 and 90

hours respectively. During active recovery the YDFL experienced the same 100 µW

power increase, but in 9.3% of the time (10 min), while the total power recovery was

12.6% and 4.4% for YDF1 and YDF2 respectively. This suggests that active

recovery reduced the amount of color centers significantly faster than passive

recovery. Another finding was that the active recovery rates declined as the number

of days after irradiation increased. This demonstrated that there is a saturation of

recovery due to the lifetimes of the color centers in the fiber. The majority of the

less stable color centers were annealed in the earlier recovery experiments. As time

progressed in active recovery, only the most stable color centers remained, which

reduced the power recovery of the YDFL. Finally, comparisons between the total

doses of gamma experiments #1 and #2 with #3 showed that as the total dose of

the fiber increased, so too did the number of color centers created. This was

evidenced by a 31% drop in recovery rate once the fiber was irradiated with gamma

radiation for a second time (increasing total dose from 145 to 250 krad(Si)). The

number of color centers increased within the fiber as the total dose increased, which

ultimately increased the amount of time required to repair these color centers.

82



The results from the mixed gamma/neutron experiments also showed an

exponential decrease of power of the YDFL with increasing radiation dose. The RIA

was also calculated for these experiments; the RIA for experiments #1, #2, and #3

were 0.4732, 0.6453, and 6.282 dB/m for total neutron fluences of 5.4×1010,

9.1×1012, and 1.1×1014 n/cm2 respectively. The last neutron fluence resulted in a

maximum power loss of 77% for the reactor experiments.

Speculating about the radiation sensitivity of a RE-doped fiber from one type of

irradiation experiment, or from an irradiation experiment with the fiber in only one

configuration (active, passive, as an amplifier or laser, etc.) would result in

inaccurate assumptions. Established databases such as the NEPP Program or the

ESCIES, [15, 16], can be used for estimating radiation sensitivity/survivability for

applications that are comparable to those contained in these databases. However, if

there is variation between the database parameters and the application, the

reported RIA may not be an accurate estimation of the RIA that will occur. If an

inaccurate assumption is made regarding the radiation sensitivity of the fiber, the

survivability of the system in which the fiber is employed may be jeopardized.

6.6 Future Research

According to a study performed by Tammela et al., the creation of color centers

increased as the percentage of excited Yb3+ ions in the YDF increased [46].

Tammela et al. also reported that the solubility of the RE ions could be affected by

changing the composition of the silica in which it was doped. More uniformly

distributed RE ions decreased the probability of energy migration between the RE

ions, which reduced the amount of color centers generated within the fiber [46].

Furthermore, given the same silica composition, increased concentration of RE ions

within the silica caused an increase in energy migration probability. Future studies
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could be conducted on YDFLs to determine if using longer YDFs that are pumped

at lower powers (limiting the amount of population inversion of the Yb3+ ions)

reduces the amount of RIA seen in the YDFL. This could be achieved by pumping

both forwards and backwards in the fiber with two separate pump lasers while

irradiating the YDF and monitoring the power in-situ. Parallel experiments could

be conducted with the same length of YDFs at increased pump power to achieve a

greater population inversion. The RIA from both experiments could be compared to

determine if there was a reduction of RIA in the YDFs with a lower excited

population of Yb3+ ions. Recovery experiments could also be conducted to explore

if the recovery rate (active or passive) would be affected by utilizing this lower

population inversion technique.

Another area in which more research needs to be conducted includes

determining the reason why changing the way a specific YDF is configured alters

the radiation sensitivity of the fiber. If an YDF is irradiated and shows a specific

range of RIA seen in the fiber, what mechanisms are in place that change the

radiation sensitivity of the same exact type of YDF when it is used in an YDFA and

an YDFL? The benefits of conducting experiments on the same fiber type in all

three configurations could help determine which damage mechanisms most affect

the fiber in each configuration.

Finally, using a neutron only irradiation source, such as AFITs neutron

generator, could help quantify the amount of damage the gamma radiation caused

in the mixed neutron/gamma experiments conducted in this thesis. Using a neutron

only irradiation source could better isolate how the absorption compares to the

absorption seen from gamma only irradiation and a mixed neutron/gamma source,

on an active YDFL.
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was recorded intermittently. The results indicate that as the total dose increased linearly with time, the laser experienced an
exponential decay in power with a maximum power loss of 99.84%, and the lasing wavelength blueshifted up to 15 nm. The laser,
when exposed to 145 krad(Si), experienced less attenuation with a higher initial power than with a lower initial power. Power
recovery experiments were conducted post-irradiation with the fiber laser off and actively lasing. Passively, the power recovered
100 and 550 uW in 18 and 90 hours respectively. Active recovery experienced the same 100 uW recovery in 9.3% of the time (10
min), and total power recovery of 12.6% and 4.4% for YDF1 and YDF2 respectively. The active recovery rate declined as the
number of days following irradiation increased, indicating a saturation of recovery from less stable color centers being repaired.

Ytterbium-doped fiber laser, gamma irradiation, neutron irradiation, active annealing, doped fiber laser, rare earth doped fiber laser,
radiation induced attenuation, Ytterbium-doped fiber, in-situ
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